AD9511/PCB Analog Devices Inc, AD9511/PCB Datasheet - Page 33

no-image

AD9511/PCB

Manufacturer Part Number
AD9511/PCB
Description
BOARD EVAL CLOCK DISTR 48LFCSP
Manufacturer
Analog Devices Inc
Type
Clock Distributionr
Datasheet

Specifications of AD9511/PCB

Contents
Evaluation Board
For Use With/related Products
AD9511
Lead Free Status / RoHS Status
Contains lead / RoHS non-compliant
or power-down. When the SYNCB function is selected, the
FUNCTION pin does not act as either RESETB or PDB.
PDB: 58h<6:5> = 11b
The FUNCTION pin may also be programmed to work as an
asynchronous full power-down, PDB. Even in this full power-
down mode, there is still some residual V
some on-chip references continue to operate. In PDB mode, the
FUNCTION pin is active low. The chip remains in a power-
down state until PDB is returned to logic high. The chip returns
to the settings programmed prior to the power-down.
See the Chip Power-Down or Sleep Mode—PDB section for
more details on what occurs during a PDB initiated power-
down.
DISTRIBUTION SECTION
As previously mentioned, the AD9511 is partitioned into two
operational sections: PLL and distribution. The PLL Section
was discussed previously. If desired, the distribution section can
be used separately from the PLL section.
CLK1 AND CLK2 CLOCK INPUTS
Either CLK1 or CLK2 may be selected as the input to the
distribution section. The CLK1 input can be connected to drive
the distribution section only. CLK1 is selected as the source for
the distribution section by setting Register 45h<0> = 1. This is
the power-up default state.
CLK1 and CLK2 work for inputs up to 1600 MHz. The jitter
performance is improved by a higher input slew rate. The input
level should be between approximately 150 mV p-p to no more
than 2 V p-p. Anything greater may result in turning on the
protection diodes on the input pins, which could degrade the
jitter performance.
See Figure 35 for the CLK1 and CLK2 equivalent input circuit.
These inputs are fully differential and self-biased. The signal
should be ac-coupled using capacitors. If a single-ended input
must be used, this can be accommodated by ac coupling to one
side of the differential input only. The other side of the input
should be bypassed to a quiet ac ground by a capacitor.
The unselected clock input (CLK1 or CLK2) should be powered
down to eliminate any possibility of unwanted crosstalk
between the selected clock input and the unselected clock input.
DIVIDERS
Each of the five clock outputs of the AD9511 has its own
divider. The divider can be bypassed to get an output at the
same frequency as the input (1×). When a divider is bypassed, it
is powered down to save power.
All integer divide ratios from 1 to 32 may be selected. A divide
ratio of 1 is selected by bypassing the divider.
S
current because
Rev. A | Page 33 of 60
Each divider can be configured for divide ratio, phase, and duty
cycle. The phase and duty cycle values that can be selected
depend on the divide ratio that is chosen.
Setting the Divide Ratio
The divide ratio is determined by the values written via the SCP
to the registers that control each individual output, OUT0 to
OUT4. These are the even numbered registers beginning at 4Ah
and going through 52h. Each of these registers is divided into
bits that control the number of clock cycles the divider output
stays high (high_cycles <3:0>) and the number of clock cycles
the divider output stays low (low_cycles <7:4>). Each value is 4
bits and has the range of 0 to 15.
The divide ratio is set by
Example 1:
Set the Divide Ratio = 2
Example 2:
Set Divide Ratio = 8
Note that a Divide Ratio of 8 may also be obtained by setting:
Although the second set of settings produce the same divide
ratio, the resulting duty cycle is not the same.
Setting the Duty Cycle
The duty cycle and the divide ratio are related. Different divide
ratios have different duty cycle options. For example, if Divide
Ratio = 2, the only duty cycle possible is 50%. If the Divide
Ratio = 4, the duty cycle may be 25%, 50%, or 75%.
The duty cycle is set by
Duty Cycle = (high_cycles + 1)/[(high_cycles + 1) + (low_cycles + 1)]
See Table 17 for the values of the available duty cycles for each
divide ratio.
high_cycles = 0
low_cycles = 0
Divide Ratio = (0 + 1) + (0 + 1) = 2
high_cycles = 3
low_cycles = 3
Divide Ratio = (3 + 1) + (3 + 1) = 8
high_cycles = 2
low_cycles = 4
Divide Ratio = (2 + 1) + (4 + 1) = 8
Divide Ratio = (high_cycles + 1) + (low_cycles + 1)
AD9511

Related parts for AD9511/PCB