DSPIC30F6010A-30I/PF Microchip Technology, DSPIC30F6010A-30I/PF Datasheet - Page 10

no-image

DSPIC30F6010A-30I/PF

Manufacturer Part Number
DSPIC30F6010A-30I/PF
Description
IC DSPIC MCU/DSP 144K 80TQFP
Manufacturer
Microchip Technology
Series
dsPIC™ 30Fr

Specifications of DSPIC30F6010A-30I/PF

Core Processor
dsPIC
Core Size
16-Bit
Speed
30 MIPs
Connectivity
CAN, I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, LVD, Motor Control PWM, QEI, POR, PWM, WDT
Number Of I /o
68
Program Memory Size
144KB (48K x 24)
Program Memory Type
FLASH
Eeprom Size
4K x 8
Ram Size
8K x 8
Voltage - Supply (vcc/vdd)
2.5 V ~ 5.5 V
Data Converters
A/D 16x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
80-TQFP, 80-VQFP
Core Frequency
40MHz
Core Supply Voltage
5.5V
Embedded Interface Type
CAN, I2C, SPI, UART
No. Of I/o's
68
Flash Memory Size
144KB
Supply Voltage Range
4.5V To 5.5V
Package
80TQFP
Device Core
dsPIC
Family Name
dsPIC30
Maximum Speed
30 MHz
Operating Supply Voltage
3.3|5 V
Data Bus Width
16 Bit
Number Of Programmable I/os
68
Interface Type
CAN/I2C/SPI/UART
On-chip Adc
16-chx10-bit
Number Of Timers
5
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
DM300019 - BOARD DEMO DSPICDEM 80L STARTERAC164314 - MODULE SKT FOR PM3 80PFDM300020 - BOARD DEV DSPICDEM MC1 MOTORCTRLAC30F001 - MODULE SOCKET DSPIC30F 80TQFPXLT80PT2 - SOCKET TRANSITION ICE 80TQFPDV164005 - KIT ICD2 SIMPLE SUIT W/USB CABLE
Lead Free Status / RoHS Status
Lead free / RoHS Compliant, Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
DSPIC30F6010A-30I/PF
Manufacturer:
AD
Quantity:
2 100
Part Number:
DSPIC30F6010A-30I/PF
Manufacturer:
Microchip Technology
Quantity:
10 000
Part Number:
DSPIC30F6010A-30I/PF
0
dsPIC30F6010A/6015
11. Module: I/O Port – Port Pin Multiplexed
12. Module: I
13. Module: Timer
14. Module: PLL Lock Status Bit
DS80258G-page 10
If the user application enables the auto-baud
feature in the UART module, the I/O pin
multiplexed with the IC1 (Input Capture) pin cannot
be used as a digital input.
Work around
None.
If there are two I
them is acting as the Master receiver and the other
as the Slave transmitter. If both devices are config-
ured for 10-bit addressing mode, and have the
same value in the A10 and A9 bits of their
addresses, then when the Slave select address is
sent from the Master, both the Master and Slave
acknowledge it. When the Master sends out the
read operation, both the Master and the Slave
enter into Read mode and both of them transmit
the data. The resultant data will be the ANDing of
the two transmissions.
Work around
In all I
A10 and A9 should be different.
When the timer is being operated in Asynchronous
mode using the secondary oscillator (32.768 kHz)
and the device is put into Sleep mode, a clock
switch to any other oscillator mode before putting
the device to Sleep prevents the timer from waking
the device from Sleep.
Work around
Do not clock switch to any other oscillator mode if
the timer is being used in Asynchronous mode
using the secondary oscillator (32.768 kHz).
The PLL LOCK Status bit (OSCCON<5>) can
occasionally get cleared and generate an
oscillator failure trap even when the PLL is still
locked and functioning correctly.
Work around
The user application must include an oscillator
failure trap service routine. In the trap service
routine, first inspect the status of the Clock Failure
Status bit (OSCCON<3>). If this bit is clear, return
from the trap service routine immediately and
continue program execution.
2
C devices, the addresses as well as bits
with IC1
2
C
2
C devices on the bus, one of
15. Module: PSV Operations
16. Module: I
17. Module: I
An address error trap occurs in certain addressing
modes when accessing the first four bytes of an
PSV page. This only occurs when using the
following addressing modes:
• MOV.D
• Register Indirect Addressing (word or byte
Work around
Do not perform PSV accesses to any of the first
four bytes using the above addressing modes. For
applications using the C language, MPLAB C30
version 3.11 or higher, provides the following
command-line switch that implements a work
around for the erratum.
-merrata=psv_trap
Refer to the readme.txt file in the MPLAB C30
v3.11 tool suite for further details.
In 10-bit Addressing mode, some address
matches don't set the RBF flag or load the receive
register I2CxRCV, if the lower address byte
matches the reserved addresses. In particular,
these include all addresses with the form
XX0000XXXX
following exceptions:
• 001111000X
• 011111001X
• 101111010X
• 111111011X
Work around
Ensure that the lower address byte in 10-bit
Addressing mode does not match any 7-bit
reserved addresses.
When the I
slave with and address of 0x102, the I2CxRCV
register content for the lower address byte is 0x01
rather
acknowledges both address bytes.
Work around
None.
mode) with pre/post-decrement
than
2
2
2
C
C
C module is configured as a 10-bit
0x02;
and
© 2008 Microchip Technology Inc.
XX1111XXXX,
however,
the
with
module
the

Related parts for DSPIC30F6010A-30I/PF