PIC18F13K22-I/SS Microchip Technology, PIC18F13K22-I/SS Datasheet - Page 149

IC MCU 8BIT 8KB FLASH 20SSOP

PIC18F13K22-I/SS

Manufacturer Part Number
PIC18F13K22-I/SS
Description
IC MCU 8BIT 8KB FLASH 20SSOP
Manufacturer
Microchip Technology
Series
PIC® XLP™ 18Fr

Specifications of PIC18F13K22-I/SS

Program Memory Type
FLASH
Program Memory Size
8KB (4K x 16)
Package / Case
20-SSOP
Core Processor
PIC
Core Size
8-Bit
Speed
64MHz
Connectivity
I²C, LIN, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
17
Eeprom Size
256 x 8
Ram Size
256 x 8
Voltage - Supply (vcc/vdd)
1.8 V ~ 5.5 V
Data Converters
A/D 12x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Processor Series
PIC18F
Core
PIC
Data Bus Width
8 bit
Data Ram Size
256 B
Interface Type
I2C, MSSP, SPI, USART
Maximum Clock Frequency
64 MHz
Number Of Programmable I/os
17
Number Of Timers
4
Operating Supply Voltage
1.8 V to 5.5 V
Maximum Operating Temperature
+ 125 C
Mounting Style
SMD/SMT
3rd Party Development Tools
52715-96, 52716-328, 52717-734, 52712-325, EWPIC18
Development Tools By Supplier
PG164130, DV164035, DV244005, DV164005
Minimum Operating Temperature
- 40 C
On-chip Adc
10 bit, 12 Channel
Package
20SSOP
Device Core
PIC
Family Name
PIC18
Maximum Speed
64 MHz
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Lead Free Status / RoHS Status
Lead free / RoHS Compliant, Lead free / RoHS Compliant
14.3.3.2
When the R/W bit of the address byte is clear and an
address match occurs, the R/W bit of the SSPSTAT
register is cleared. The received address is loaded into
the SSPBUF register and the SDA line is held low
(ACK).
When the address byte overflow condition exists, then
the no Acknowledge (ACK) pulse is given. An overflow
condition is defined as either bit BF bit of the SSPSTAT
register is set, or bit SSPOV bit of the SSPCON1
register is set.
An MSSP interrupt is generated for each data transfer
byte. Flag bit, SSPIF of the PIR1 register, must be
cleared by software.
When the SEN bit of the SSPCON2 register is set, SCL
will be held low (clock stretch) following each data
transfer. The clock must be released by setting the
CKP bit of the SSPCON1 register. See Section 14.3.4
“Clock Stretching” for more detail.
 2010 Microchip Technology Inc.
Reception
Preliminary
PIC18F1XK22/LF1XK22
14.3.3.3
When the R/W bit of the incoming address byte is set
and an address match occurs, the R/W bit of the
SSPSTAT register is set. The received address is
loaded into the SSPBUF register. The ACK pulse will
be sent on the ninth bit and pin SCK/SCL is held low
regardless of SEN (see Section 14.3.4 “Clock
Stretching” for more detail). By stretching the clock,
the master will be unable to assert another clock pulse
until the slave is done preparing the transmit data. The
transmit data must be loaded into the SSPBUF register
which also loads the SSPSR register. Then pin
SCK/SCL should be released by setting the CKP bit of
the SSPCON1 register. The eight data bits are shifted
out on the falling edge of the SCL input. This ensures
that the SDA signal is valid during the SCL high time
(Figure 14-9).
The ACK pulse from the master-receiver is latched on
the rising edge of the ninth SCL input pulse. If the SDA
line is high (not ACK), then the data transfer is complete.
In this case, when the ACK is latched by the slave, the
slave logic is reset (resets SSPSTAT register) and the
slave monitors for another occurrence of the Start bit. If
the SDA line was low (ACK), the next transmit data must
be loaded into the SSPBUF register. Again, pin
SCK/SCL must be released by setting bit CKP.
An MSSP interrupt is generated for each data transfer
byte. The SSPIF bit must be cleared by software and
the SSPSTAT register is used to determine the status
of the byte. The SSPIF bit is set on the falling edge of
the ninth clock pulse.
Transmission
DS41365D-page 149

Related parts for PIC18F13K22-I/SS