PIC18LF25K22-I/SP Microchip Technology, PIC18LF25K22-I/SP Datasheet - Page 238

no-image

PIC18LF25K22-I/SP

Manufacturer Part Number
PIC18LF25K22-I/SP
Description
MCU 8BIT 32KB FLASH 3.6V 28SDIP
Manufacturer
Microchip Technology
Series
PIC® XLP™ 18Fr

Specifications of PIC18LF25K22-I/SP

Program Memory Type
FLASH
Program Memory Size
32KB (16K x 16)
Package / Case
28-DIP (0.300", 7.62mm)
Core Processor
PIC
Core Size
8-Bit
Speed
64MHz
Connectivity
I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number Of I /o
24
Eeprom Size
256 x 8
Ram Size
1.5K x 8
Voltage - Supply (vcc/vdd)
1.8 V ~ 3.6 V
Data Converters
A/D 19x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Processor Series
PIC18LF
Core
PIC
Data Bus Width
8 bit
Data Ram Size
1536 B
Interface Type
I2C, SPI, EUSART
Maximum Clock Frequency
64 MHz
Number Of Programmable I/os
25
Number Of Timers
7
Operating Supply Voltage
1.8 V to 3.6 V
Maximum Operating Temperature
+ 85 C
Mounting Style
Through Hole
3rd Party Development Tools
52715-96, 52716-328, 52717-734, 52712-325, EWPIC18
Development Tools By Supplier
PG164130, DV164005
Minimum Operating Temperature
- 40 C
On-chip Adc
10 bit, 17 Channel
On-chip Dac
5 bit
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Lead Free Status / RoHS Status
Lead free / RoHS Compliant, Lead free / RoHS Compliant
PIC18(L)F2X/4XK22
15.6
Master mode is enabled by setting and clearing the
appropriate SSPxM bits in the SSPxCON1 register and
by setting the SSPxEN bit. In Master mode, the SCLx
and SDAx lines are set as inputs and are manipulated
by the MSSPx hardware.
Master mode of operation is supported by interrupt
generation on the detection of the Start and Stop con-
ditions. The Stop (P) and Start (S) bits are cleared from
a Reset or when the MSSPx module is disabled. Con-
trol of the I
or the bus is Idle.
In Firmware Controlled Master mode, user code
conducts all I
Stop bit condition detection. Start and Stop condition
detection is the only active circuitry in this mode. All
other communication is done by the user software
directly manipulating the SDAx and SCLx lines.
The following events will cause the SSPx Interrupt Flag
bit, SSPxIF, to be set (SSPx interrupt, if enabled):
• Start condition detected
• Stop condition detected
• Data transfer byte transmitted/received
• Acknowledge transmitted/received
• Repeated Start generated
DS41412B-page 238
Note 1: The MSSPx module, when configured in
I
2: When
2
C MASTER MODE
2
C bus may be taken when the P bit is set,
I
ing of events. For instance, the user is not
allowed to initiate a Start condition and
immediately write the SSPxBUF register
to initiate transmission before the Start
condition is complete. In this case, the
SSPxBUF will not be written to and the
WCOL bit will be set, indicating that a write
to the SSPxBUF did not occur
detection is masked and an interrupt is
generated when the SEN/PEN bit is
cleared and the generation is complete.
2
C Master mode, does not allow queue-
2
C bus operations based on Start and
in
Master
mode,
Start/Stop
Preliminary
15.6.1
The master device generates all of the serial clock
pulses and the Start and Stop conditions. A transfer is
ended with a Stop condition or with a Repeated Start
condition. Since the Repeated Start condition is also
the beginning of the next serial transfer, the I
not be released.
In Master Transmitter mode, serial data is output
through SDAx, while SCLx outputs the serial clock. The
first byte transmitted contains the slave address of the
receiving device (7 bits) and the Read/Write (R/W) bit.
In this case, the R/W bit will be logic ‘0’. Serial data is
transmitted 8 bits at a time. After each byte is transmit-
ted, an Acknowledge bit is received. Start and Stop
conditions are output to indicate the beginning and the
end of a serial transfer.
In Master Receive mode, the first byte transmitted con-
tains the slave address of the transmitting device
(7 bits) and the R/W bit. In this case, the R/W bit will be
logic ‘1’. Thus, the first byte transmitted is a 7-bit slave
address followed by a ‘1’ to indicate the receive bit.
Serial data is received via SDAx, while SCLx outputs
the serial clock. Serial data is received 8 bits at a time.
After each byte is received, an Acknowledge bit is
transmitted. Start and Stop conditions indicate the
beginning and end of transmission.
A Baud Rate Generator is used to set the clock
frequency output on SCLx. See Section 15.7 “Baud
Rate Generator” for more detail.
I
2
C MASTER MODE OPERATION
 2010 Microchip Technology Inc.
2
C bus will

Related parts for PIC18LF25K22-I/SP