EFM32G200F16 Energy Micro, EFM32G200F16 Datasheet - Page 3

MCU 32BIT 16KB FLASH 32-QFN

EFM32G200F16

Manufacturer Part Number
EFM32G200F16
Description
MCU 32BIT 16KB FLASH 32-QFN
Manufacturer
Energy Micro
Series
Geckor
Datasheets

Specifications of EFM32G200F16

Core Processor
ARM® Cortex-M3™
Core Size
32-Bit
Speed
32MHz
Connectivity
EBI/EMI, I²C, IrDA, SmartCard, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number Of I /o
24
Program Memory Size
16KB (16K x 8)
Program Memory Type
FLASH
Ram Size
8K x 8
Voltage - Supply (vcc/vdd)
1.8 V ~ 3.8 V
Data Converters
A/D 4x12b, D/A 1x12b
Oscillator Type
External
Operating Temperature
-40°C ~ 85°C
Package / Case
32-VQFN Exposed Pad
Processor Series
EFM32G200
Core
ARM Cortex-M3
Data Bus Width
32 bit
Data Ram Size
8 KB
Interface Type
I2C, UART
Maximum Clock Frequency
32 MHz
Number Of Programmable I/os
24
Number Of Timers
2
Operating Supply Voltage
1.8 V to 3.8 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
Minimum Operating Temperature
- 40 C
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-
Lead Free Status / Rohs Status
 Details
2 System Summary
2.1 System Introduction
2.1.1 ARM Cortex-M3 Core
2.1.2 Debug Interface (DBG)
2.1.3 Memory System Controller (MSC)
2.1.4 Direct Memory Access Controller (DMA)
2.1.5 Reset Management Unit (RMU)
2.1.6 Energy Management Unit (EMU)
2.1.7 Clock Management Unit (CMU)
2010-12-17 - d0003_Rev1.20
The EFM32 MCUs are the world’s most energy friendly microcontrollers. With a unique combination of
the powerful 32-bit ARM Cortex-M3, innovative low energy techniques, short wake-up time from energy
saving modes, and a wide selection of peripherals, the EFM32G microcontroller is well suited for any
battery operated application as well as other systems requiring high performance and low-energy con-
sumption. This section gives a short introduction to each of the modules in general terms and also and
shows a summary of the configuration for the EFM32G200 devices. For a complete feature set and in-
depth information on the modules, the reader is referred to the EFM32G Reference Manual.
The ARM Cortex-M3 includes a 32-bit RISC processor which can achieve as much as 1.25 Dhrystone
MIPS/MHz. A Memory Protection Unit with support for up to 8 memory segments is included, as well
as a Wake-up Interrupt Controller handling interrupts triggered while the CPU is asleep. The EFM32
implementation of the Cortex-M3 is described in detail in EFM32G Cortex-M3 Reference Manual.
This device includes hardware debug support through a 2-pin serial-wire debug interface. In addition
there is also a 1-wire Serial Wire Viewer pin which can be used to output profiling information, data trace
and software-generated messages.
The Memory System Controller (MSC) is the program memory unit of the EFM32G microcontroller. The
flash memory is readable and writable from both the Cortex-M3 and DMA. The flash memory is divided
into two blocks; the main block and the information block. Program code is normally written to the main
block. Additionally, the information block is available for special user data and flash lock bits. There is
also a read-only page in the information block containing system and device calibration data. Read and
write operations are supported in the energy modes EM0 and EM1.
The Direct Memory Access (DMA) controller performs memory operations independently of the CPU.
This has the benefit of reducing the energy consumption and the workload of the CPU, and enables
the system to stay in low energy modes when moving for instance data from the USART to RAM or
from the External Bus Interface to a PWM-generating timer. The DMA controller uses the PL230 µDMA
controller licensed from ARM.
The RMU is responsible for handling the reset functionality of the EFM32G.
The Energy Management Unit (EMU) manage all the low energy modes (EM) in EFM32G microcon-
trollers. Each energy mode manages if the CPU and the various peripherals are available. The EMU
can also be used to turn off the power to unused SRAM blocks.
The Clock Management Unit (CMU) is responsible for controlling the oscillators and clocks on-board
the EFM32G. The CMU provides the capability to turn on and off the clock on an individual basis to all
...the world's most energy friendly microcontrollers
3
www.energymicro.com

Related parts for EFM32G200F16