AD7911ARMZ Analog Devices Inc, AD7911ARMZ Datasheet - Page 22

IC ADC 10BIT DUAL 2CH 8-MSOP

AD7911ARMZ

Manufacturer Part Number
AD7911ARMZ
Description
IC ADC 10BIT DUAL 2CH 8-MSOP
Manufacturer
Analog Devices Inc
Datasheet

Specifications of AD7911ARMZ

Data Interface
DSP, MICROWIRE™, QSPI™, Serial, SPI™
Operating Temperature
-40°C ~ 85°C
Number Of Bits
10
Sampling Rate (per Second)
250k
Number Of Converters
1
Power Dissipation (max)
20mW
Voltage Supply Source
Single Supply
Mounting Type
Surface Mount
Package / Case
8-TSSOP, 8-MSOP (0.118", 3.00mm Width)
Resolution (bits)
10bit
Input Channel Type
Single Ended
Supply Voltage Range - Analogue
2.35V To 5.25V
Supply Current
4mA
No. Of Pins
8
Sampling Rate
250kSPS
Rohs Compliant
Yes
Number Of Elements
1
Resolution
10Bit
Architecture
SAR
Sample Rate
250KSPS
Input Polarity
Unipolar
Input Type
Voltage
Rated Input Volt
5.25V
Differential Input
No
Power Supply Requirement
Single
Single Supply Voltage (typ)
3/5V
Single Supply Voltage (min)
2.35V
Single Supply Voltage (max)
5.25V
Dual Supply Voltage (typ)
Not RequiredV
Dual Supply Voltage (min)
Not RequiredV
Dual Supply Voltage (max)
Not RequiredV
Power Dissipation
20mW
Differential Linearity Error
±0.5LSB
Integral Nonlinearity Error
±0.5LSB
Operating Temp Range
-40C to 85C
Operating Temperature Classification
Industrial
Mounting
Surface Mount
Pin Count
8
Package Type
MSOP
Input Signal Type
Single-Ended
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
AD7911ARMZ
Manufacturer:
ADI
Quantity:
3 000
Part Number:
AD7911ARMZ
Manufacturer:
ADI/亚德诺
Quantity:
20 000
Company:
Part Number:
AD7911ARMZ
Quantity:
1 000
Part Number:
AD7911ARMZ-REEL
Manufacturer:
ADI
Quantity:
3 000
Part Number:
AD7911ARMZ-REEL7
Manufacturer:
ADI
Quantity:
3 000
AD7911/AD7921
MICROPROCESSOR INTERFACING
The serial interface on the AD7911/AD7921 allows the parts to
be directly connected to a range of microprocessors. This
section explains how to interface the AD7911/AD7921 with
some of the more common microcontroller and DSP serial
interface protocols.
AD7911/AD7921 to TMS320C541 Interface
The serial interface on the TMS320C541 uses a continuous
serial clock and frame synchronization signals to synchronize
the data transfer operations with peripheral devices like the
AD7911/AD7921. The CS input allows easy interfacing between
the TMS320C541 and the AD7911/AD7921 without any glue
logic required. The serial port of the TMS320C541 is set up to
operate in burst mode (FSM = 1 in the serial port control
register, SPC) with the internal serial clock CLKX (MCM = 1 in
the SPC register) and the internal frame signal (TXM = 1 in the
SPC register); therefore, both pins are configured as outputs. For
the AD7921, the word length should be set to 16 bits (FO = 0 in
the SPC register). This DSP allows frames with a word length of
16 bits or 8 bits only. In the AD7911, therefore, where 14 bits are
required, the FO bit should be set up to 16 bits, and 16 SCLKs
are needed. For the AD7911, two trailing zeros are clocked out
in the last two clock cycles.
The values in the SPC register are as follows:
To implement the power-down mode on the AD7911/AD7921,
the format bit, FO, can be set to 1, which sets the word length to
8 bits.
The connection diagram is shown in Figure 32. Note that, for
signal processing applications, the frame synchronization signal
from the TMS320C541 must provide equidistant sampling.
*ADDITIONAL PINS OMITTED FOR CLARITY
FO = 0
FSM = 1
MCM = 1
TXM = 1
AD7921*
AD7911/
DOUT
SCLK
DIN
CS
Figure 32. Interfacing to the TMS320C541
CLKX
CLKR
DR
DX
FSX
FSR
TMS320C541*
Rev. 0 | Page 22 of 28
AD7911/AD7921 to ADSP-218x
The ADSP-218x family of DSPs are interfaced directly to the
AD7911/AD7921 without any glue logic required. The SPORT
control register should be set up as follows:
To implement the power-down mode, SLEN should be set to
0111 to issue an 8-bit SCLK burst. The connection diagram is
shown in Figure 33. The ADSP-218x has the TFS and RFS of the
SPORT tied together, with TFS set as an output and RFS set as
an input. The DSP operates in alternate framing mode and the
SPORT control register is set up as described previously. The
frame synchronization signal generated on the TFS is tied to CS
and, as with all signal processing applications, equidistant
sampling is necessary. However, in this example, the timer
interrupt is used to control the sampling rate of the ADC and,
under certain conditions, equidistant sampling might not be
achieved.
The timer registers are loaded with a value that provides an
interrupt at the required sample interval. When an interrupt is
received, a value is transmitted with TFS/DT (ADC control
word). The TFS is used to control the RFS and, therefore, the
reading of data. The frequency of the serial clock is set in the
SCLKDIV register. When the instruction to transmit with TFS
is given, that is, TX0 = AX0, the state of the SCLK is checked.
The DSP waits until the SCLK has gone high, low, and high
again before transmission starts. If the timer and SCLK values
are chosen such that the instruction to transmit occurs on or
near the rising edge of SCLK, the data might be transmitted, or
it might wait until the next clock edge.
*ADDITIONAL PINS OMITTED FOR CLARITY
TFSW = RFSW = 1, alternate framing
INVRFS = INVTFS = 1, active low frame signal
DTYPE = 00, right-justify data
ISCLK = 1, internal serial clock
TFSR = RFSR = 1, frame every word
IRFS = 0, set up RFS as an input
ITFS = 1, set up TFS as an output
SLEN = 1111, 16 bits for the AD7921
SLEN = 1101, 14 bits for the AD7911
AD7911/
AD7921*
DOUT
SCLK
DIN
CS
Figure 33. Interfacing to the ADSP-218x
SCLK
DR
DT
RFS
TFS
ADSP-218x*

Related parts for AD7911ARMZ