AD9835BRUZ Analog Devices Inc, AD9835BRUZ Datasheet - Page 13

no-image

AD9835BRUZ

Manufacturer Part Number
AD9835BRUZ
Description
IC DDS 10BIT 50MHZ 16-TSSOP
Manufacturer
Analog Devices Inc
Datasheet

Specifications of AD9835BRUZ

Resolution (bits)
10 b
Master Fclk
50MHz
Tuning Word Width (bits)
32 b
Voltage - Supply
4.75 V ~ 5.25 V
Operating Temperature
-40°C ~ 85°C
Mounting Type
Surface Mount
Package / Case
16-TSSOP
Transmitting Current
5mA
Rf Ic Case Style
TSSOP
No. Of Pins
16
Supply Voltage Range
4.75V To 5.25V
Operating Temperature Range
-40°C To +85°C
Msl
MSL 3 - 168 Hours
Termination Type
SMD
Rohs Compliant
Yes
Filter Terminals
SMD
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
EVAL-AD9835EBZ - BOARD EVALUATION FOR AD9835
Lead Free Status / RoHS Status
Lead free / RoHS Compliant, Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
AD9835BRUZ
Manufacturer:
ADI/亚德诺
Quantity:
20 000
Part Number:
AD9835BRUZ-REEL
Manufacturer:
ADI
Quantity:
8 000
Part Number:
AD9835BRUZ-REEL7
Manufacturer:
ADI/亚德诺
Quantity:
20 000
REV. 0
APPLICATIONS
The AD9835 contains functions that make it suitable for
modulation applications. The part can be used to perform
simple modulation such as FSK. More complex modulation
schemes such as GMSK and QPSK can also be implemented
using the AD9835. In an FSK application, the two frequency
registers of the AD9835 are loaded with different values; one
frequency will represent the space frequency while the other will
represent the mark frequency. The digital data stream is fed to
the FSELECT pin, which will cause the AD9835 to modulate
the carrier frequency between the two values.
The AD9835 has four phase registers; this enables the part to
perform PSK. With phase shift keying, the carrier frequency is
phase shifted, the phase being altered by an amount that is
related to the bit stream being input to the modulator. The
presence of four shift registers eases the interaction needed
between the DSP and the AD9835.
The AD9835 is also suitable for signal generator applications.
With its low current consumption, the part is suitable for
applications in which it can be used as a local oscillator.
Grounding and Layout
The printed circuit board that houses the AD9835 should be
designed so that the analog and digital sections are separated
and confined to certain areas of the board. This facilitates the
use of ground planes which can be separated easily. A minimum
etch technique is generally best for ground planes as it gives the
best shielding. Digital and analog ground planes should only be
joined in one place. If the AD9835 is the only device requiring
an AGND to DGND connection, then the ground planes
should be connected at the AGND and DGND pins of the
AD9835. If the AD9835 is in a system where multiple devices
require AGND to DGND connections, the connection should
be made at one point only, a star ground point that should be
established as close as possible to the AD9835.
Avoid running digital lines under the device as these will couple
noise onto the die. The analog ground plane should be allowed
to run under the AD9835 to avoid noise coupling. The power
supply lines to the AD9835 should use as large a track as is
possible to provide low impedance paths and reduce the effects
of glitches on the power supply line. Fast switching signals
such as clocks should be shielded with digital ground to avoid
radiating noise to other sections of the board. Avoid crossover
of digital and analog signals. Traces on opposite sides of the
board should run at right angles to each other. This will reduce
the effects of feedthrough through the board. A microstrip
technique is by far the best but is not always possible with a
double-sided board. In this technique, the component side of
the board is dedicated to ground planes while signals are placed
on the other side.
Good decoupling is important. The analog and digital supplies
to the AD9835 are independent and separately pinned out to
minimize coupling between analog and digital sections of the
device. All analog and digital supplies should be decoupled to
AGND and DGND respectively with 0.1 F ceramic capacitors
in parallel with 10 F tantalum capacitors. To achieve the best
from the decoupling capacitors, they should be placed as close
–13–
as possible to the device, ideally right up against the device. In
systems where a common supply is used to drive both the
AVDD and DVDD of the AD9835, it is recommended that the
system’s AVDD supply be used. This supply should have the
recommended analog supply decoupling between the AVDD
pins of the AD9835 and AGND and the recommended digital
supply decoupling capacitors between the DVDD pins and
DGND.
Interfacing the AD9835 to Microprocessors
The AD9835 has a standard serial interface that allows the part
to interface directly with several microprocessors. The device
uses an external serial clock to write the data/control informa-
tion into the device. The serial clock can have a frequency of
20 MHz maximum. The serial clock can be continuous or it
can idle high or low between write operations. When data/
control information is being written to the AD9835, FSYNC
is taken low and held low while the 16 bits of data are being
written into the AD9835. The FSYNC signal frames the 16 bits
of information being loaded into the AD9835.
AD9835-to-ADSP-21xx Interface
Figure 24 shows the serial interface between the AD9835 and
the ADSP-21xx. The ADSP-21xx should be set up to operate
in the SPORT Transmit Alternate Framing Mode (TFSW = 1).
The ADSP-21xx is programmed through the SPORT control
register and should be configured as follows: Internal clock
operation (ISCLK = 1), Active low framing (INVTFS = 1),
16-bit word length (SLEN = 15), Internal frame sync signal
(ITFS = 1), Generate a frame sync for each write operation
(TFSR = 1). Transmission is initiated by writing a word to the
Tx register after the SPORT has been enabled. The data is
clocked out on each rising edge of the serial clock and clocked
into the AD9835 on the SCLK falling edge.
AD9835-to-68HC11/68L11 Interface
Figure 25 shows the serial interface between the AD9835 and
the 68HC11/68L11 microcontroller. The microcontroller is
configured as the master by setting bit MSTR in the SPCR to 1
and, this provides a serial clock on SCK while the MOSI output
drives the serial data line SDATA. Since the microcontroller
does not have a dedicated frame sync pin, the FSYNC signal is
derived from a port line (PC7). The setup conditions for cor-
rect operation of the interface are as follows: the SCK idles high
between write operations (CPOL = 0), data is valid on the SCK
falling edge (CPHA = 1). When data is being transmitted to the
AD9835, the FSYNC line is taken low (PC7). Serial data from
the 68HC11/68L11 is transmitted in 8-bit bytes with only eight
Figure 24. ADSP-2101/ADSP-2103-to-AD9835 Interface
ADDITIONAL PINS OMITTED FOR CLARITY
ADSP-2101/
ADSP-2103
SCLK
TFS
DT
FSYNC
SDATA
SCLK
AD9835
AD9835

Related parts for AD9835BRUZ