PT100-1100 API Delevan Inc, PT100-1100 Datasheet

no-image

PT100-1100

Manufacturer Part Number
PT100-1100
Description
Power Inductors 100uH 15% .05ohm VrtMnt Toroid Radial
Manufacturer
API Delevan Inc
Datasheet

Specifications of PT100-1100

Inductance
100 uH
Termination Style
Radial
Lead Free Status / Rohs Status
No
Power Toroids -
Horizontal or Vertical Mount
Inductance tested at 1 KHz, <10 gauss and 0 Adc
DC Resistance at 25°C
Rated Idc based on 40°C maximum rise from 25°C
ambient with 0 Arms
Windings single layered to maximize operating
frequency and minimize board space
Self leads solder coated to within .050" of seating plane
Other values available on request
Packaging Bulk only
Mounting Standard mounting is self-lead radial per
Figure “1”. Optional mounting methods are self-leaded
horizontal per Figure “2” or vertical base mounted per
Figures “3” and “4”.
Notes to Figure 5 (Page 102) The PT Toroid Series inductance is specified at AC and DC signal levels which have no significant effect
on the permeability of the powdered iron toroidal core. Superimposed AC and DC voltages will change the permeability and therefore
the inductance, under operating conditions. Typically, DC currents will reduce the inductance, while AC signals will increase the
inductance up to a point, before beginning to decrease. Supporting information is provided, detailing the AC or DC effects upon each
part. Saturation resulting from DC currents is specified with waveform having less than a 1% ripple content. When considering the AC
waveform, both the frequency and voltage level must be taken into account. As an aid in defining what effect the alternating sine wave
signal will have, the voltage/frequency factor curve can be used. To determine what change of inductance can be expected at a given
voltage level and frequency, simply divide the sinusoidal RMS voltage by the frequency. The voltage is in volts and the frequency is in
hertz. As an example, if using part number PT25-680 at a 1VRMS signal level, and a frequency of 25KHz, the voltage/frequency factor
is calculated to be: 1VRMS/25,000Hz = 40 x 10–6. Referring to the graph, a 39% increase in inductance would be expected.
Notes to Figure 6 (Page 102) Typical saturation effects as a function of DC flowing through the part. Data is representative of a DC
waveform with less than 1% ripple, and an AC waveform less than 10 gauss.
Note This information is intended to be used in assisting the designer in part selection. Each operating application may contain other
variables which must be considered in part selection; such as temperature effects, waveform distortion, etc.…
Delevan Sales/Engineering staff is available to provide information as needed to fit each application.
4/2005
FIGURE
1
FIGURE
3
Series
270 Quaker Rd., East Aurora NY 14052 • Phone 716-652-3600 • Fax 716-652-4814
STANDARD
VERTICAL
VERTICAL
PTxxxxR
PT
2-LEAD
FIGURE
2
4
FIGURE
VERTICAL
4-LEAD
www
HORIZONTAL
.
delevan
.
com
PT5-530
PT5-700
PT5-800
PT5-1000
PT10-530
PT10-680
PT10-820
PT10-990
PT25-680
PT25-800
PT25-900
PT25-1000
PT50-780
PT50-900
PT50-1020
PT50-1320
PT75-900
PT75-980
PT75-1260
PT75-1550
PT100-1000
PT100-1100
PT100-1260
PT100-1550
PT150-1040
PT150-1250
PT150-1500
PT150-2050
PT250-1200
PT250-1500
PT250-1800
PT300-1200
PT300-1500
PT300-1750
PT400-1200
PT400-1500
PT400-1750
PT500-1450
PT500-1750
PT500-2000
PT750-1400
PT750-1700
PT750-2050
PT1000-1400
PT1000-1750
PT1000-2050
E-mail: apisales@delevan . com
*Complete part # must include series # PLUS the dash #
refer to TECHNICAL section of this catalog.
For further surface finish information,
1000
1000
1000
100
100
100
100
150
150
150
150
250
250
250
300
300
300
400
400
400
500
500
500
750
750
750
PT SERIES POWER TOROIDS
10
10
10
10
25
25
25
25
50
50
50
50
75
75
75
75
5
5
5
5
0.015
0.012
0.010
0.008
0.020
0.015
0.010
0.008
0.035
0.025
0.020
0.014
0.050
0.030
0.025
0.020
0.060
0.040
0.035
0.025
0.080
0.050
0.035
0.028
0.100
0.060
0.050
0.040
0.130
0.080
0.055
0.150
0.100
0.075
0.250
0.180
0.110
0.220
0.160
0.090
0.350
0.280
0.150
0.620
0.420
0.200
10.6
12.8
13.2
10.4
11.0
10.6
10.3
12.3
6.1
7.4
4.9
6.8
9.3
4.4
6.6
7.0
3.8
5.6
7.0
3.9
5.2
7.4
3.5
5.1
7.8
3.4
5.7
7.7
3.8
6.1
9.1
3.3
5.5
7.3
2.4
4.7
6.0
3.4
5.0
8.0
2.6
3.7
6.4
1.8
3.1
5.9
MOUNTING AVAILABLE
PAGE
99

Related parts for PT100-1100

PT100-1100 Summary of contents

Page 1

... PT25-680 25 PT25-800 25 PT25-900 25 PT25-1000 25 PT50-780 50 PT50-900 50 PT50-1020 50 PT50-1320 50 PT75-900 75 PT75-980 75 PT75-1260 75 PT75-1550 75 PT100-1000 100 PT100-1100 100 PT100-1260 100 PT100-1550 100 PT150-1040 150 PT150-1250 150 PT150-1500 150 PT150-2050 150 PT250-1200 250 PT250-1500 250 PT250-1800 250 PT300-1200 300 PT300-1500 300 HORIZONTAL PT300-1750 300 ...

Page 2

... PT75-900 75 0.060 3.9 PT75-980 75 0.040 5.2 PT75-1260 75 0.035 7.4 PT75-1550 75 0.025 10.6 PT100-1000 100 0.080 3.5 PT100-1100 100 0.050 5.1 PT100-1260 100 0.035 7.8 PT100-1550 100 0.028 10.3 PT150-1040 150 0.100 3.4 PT150-1250 150 0.060 5.7 PT150-1500 150 0.050 7 ...

Page 3

... PT50-1020-VM 50 0.025 7.0 3 PT75-900-VM 75 0.060 3.9 3 PT75-980-VM 75 0.040 5.2 3 PT75-1260-VM 75 0.035 7.4 3 PT100-1000-VM 100 0.080 3.5 3 PT100-1100-VM 100 0.050 5.1 3 PT100-1260-VM 100 0.035 7.8 3 PT150-1040-VM 150 0.100 3.4 3 PT150-1250-VM 150 0.060 5.7 3 PT150-1500-VM 150 0.050 7.7 4 PT250-1200-VM 250 0.130 3 ...

Page 4

... For more detailed graphs, contact factory PAGE 102 1 See Notes, Page 99 10 VOLTAGE/FREQUENCY FACTOR (X 10 –6 ) Graphs apply to all mounting styles. For more detailed graphs, contact factory. 13) PT50-780 19) PT100-1100 25) PT100-1550 14) PT50-900 20) PT50-1320 26) PT150-1250 15) PT75-900 21) PT150-1040 27) PT150-1500 16) PT75-980 22) PT75-1260 28) PT250-1200 17) PT50-1020 23) PT100-1260 ...

Related keywords