SAM3U1E Atmel Corporation, SAM3U1E Datasheet - Page 25

no-image

SAM3U1E

Manufacturer Part Number
SAM3U1E
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of SAM3U1E

Flash (kbytes)
64 Kbytes
Pin Count
144
Max. Operating Frequency
96 MHz
Cpu
Cortex-M3
# Of Touch Channels
57
Hardware Qtouch Acquisition
No
Max I/o Pins
96
Ext Interrupts
96
Usb Transceiver
1
Quadrature Decoder Channels
1
Usb Speed
Hi-Speed
Usb Interface
Device
Spi
5
Twi (i2c)
2
Uart
5
Ssc
1
Sd / Emmc
1
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
16
Adc Resolution (bits)
12
Adc Speed (ksps)
384
Resistive Touch Screen
No
Temp. Sensor
No
Crypto Engine
No
Sram (kbytes)
20
Self Program Memory
YES
External Bus Interface
1
Dram Memory
No
Nand Interface
Yes
Picopower
No
Temp. Range (deg C)
-40 to 85
I/o Supply Class
1.8/3.3
Operating Voltage (vcc)
1.62 to 3.6
Fpu
No
Mpu / Mmu
Yes / No
Timers
3
Output Compare Channels
3
Input Capture Channels
3
Pwm Channels
4
32khz Rtc
Yes
Calibrated Rc Oscillator
Yes
6.4
6.5
6.6
6.7
6430ES–ATARM–22-Aug-11
Test Pin
NRST Pin
NRSTB Pin
ERASE Pin
The JTAGSEL pin is used to select the JTAG boundary scan when asserted at a high level. It
integrates a permanent pull-down resistor of about 15 kΩ to GNDBU, so that it can be left uncon-
nected for normal operations.
By default, the JTAG Debug Port is active. If the debugger host wants to switch to the Serial
Wire Debug Port, it must provide a dedicated JTAG sequence on TMS/SWDIO and
TCK/SWCLK which disables the JTAG-DP and enables the SW-DP. When the Serial Wire
Debug Port is active, TDO/TRACESWO can be used for trace.
The asynchronous TRACE output (TRACESWO) is multiplexed with TDO. So the asynchronous
trace can only be used with SW-DP, not JTAG-DP.
All the JTAG signals are supplied with VDDIO except JTAGSEL, supplied by VDDBU.
The TST pin is used for JTAG Boundary Scan Manufacturing Test or fast flash programming
mode of the SAM3U series. The TST pin integrates a permanent pull-down resistor of about 15
kΩ to GND, so that it can be left unconnected for normal operations. To enter fast programming
mode, see the “Fast Flash Programming Interface” section of the product datasheet. For more
on the manufacturing and test mode, refer to the “Debug and Test” section of the product
datasheet.
The NRST pin is bidirectional. It is handled by the on-chip reset controller and can be driven low
to provide a reset signal to the external components or asserted low externally to reset the
microcontroller. It will reset the Core and the peripherals, except the Backup region (RTC, RTT
and Supply Controller). There is no constraint on the length of the reset pulse and the reset con-
troller can guarantee a minimum pulse length.
The NRST pin integrates a permanent pull-up resistor to VDDIO of about 100 kΩ.
The NRSTB pin is input only and enables asynchronous reset of the SAM3U when asserted low.
The NRSTB pin integrates a permanent pull-up resistor of about 15 kΩ. This allows connection
of a simple push button on the NRSTB pin as a system-user reset. In all modes, this pin will
reset the chip including the Backup region (RTC, RTT and Supply Controller). It reacts as the
Power-on reset. It can be used as an external system reset source. In harsh environments, it is
recommended to add an external capacitor (10 nF) between NRSTB and VDDBU. (For filtering
values refer to “I/O Characteristics” in the “Electrical Characteristics” section of the product
datasheet.)
It embeds an anti-glitch filter.
The ERASE pin is used to reinitialize the Flash content and some of its NVM bits. It integrates a
permanent pull-down resistor of about 15 kΩ to GND, so that it can be left unconnected for nor-
mal operations.
This pin is debounced by SCLK to improve the glitch tolerance. When the ERASE pin is tied high
during less than 100 ms, it is not taken into account. The pin must be tied high during more than
220 ms to perform the reinitialization of the Flash.
SAM3U Series
25

Related parts for SAM3U1E