MAX4052

Manufacturer Part NumberMAX4052
DescriptionThe MAX4051/MAX4052/MAX4053 and MAX4051A/MAX4052A/MAX4053A are low-voltage, CMOS analog ICs configured as an 8-channel multiplexer (MAX4051/A), two 4-channel multiplexers (MAX4052/A), and three single-pole/double-throw (SPDT) switches (MAX4053/A)
ManufacturerMaxim
MAX4052 datasheet
 


1
2
3
4
5
6
7
8
9
10
11
Page 11
12
Page 12
13
Page 13
14
Page 14
15
Page 15
16
Page 16
17
Page 17
18
Page 18
19
Page 19
Page 12/19

Download datasheet (369Kb)Embed
PrevNext
Low-Voltage, CMOS Analog
Multiplexers/Switches
V+ and GND power the internal logic and logic-level
translators, and set both the input and output logic lim-
its. The logic-level translators convert the logic levels
into switched V+ and V- signals to drive the gates of
the analog signals. This drive signal is the only connec-
tion between the logic supplies (and signals) and the
analog supplies. V+ and V- have ESD-protection
diodes to GND.
The logic-level thresholds are TTL/CMOS compatible
when V+ is +5V. As V+ rises, the threshold increases
slightly, so when V+ reaches +12V, the threshold is
about 3.1V; above the TTL-guaranteed high-level mini-
mum of 2.8V, but still compatible with CMOS outputs.
These devices operate with bipolar supplies between
±3.0V and ±8V. The V+ and V- supplies need not be
symmetrical, but their sum cannot exceed the absolute
maximum rating of +17V.
These devices operate from a single supply between
+3V and +16V when V- is connected to GND. All of the
bipolar precautions must be observed. At room temper-
ature, they actually “work” with a single supply at near
or below +1.7V, although as supply voltage decreases,
switch on-resistance and switching times become very
high.
Overvoltage Protection
Proper power-supply sequencing is recommended for
all CMOS devices. Do not exceed the absolute maxi-
mum ratings, because stresses beyond the listed rat-
ings can cause permanent damage to the devices.
Always sequence V+ on first, then V-, followed by the
logic inputs (NO) and by COM. If power-supply
sequencing is not possible, add two small signal diodes
(D1, D2) in series with the supply pins for overvoltage
protection (Figure 1).
Adding diodes reduces the analog signal range to one
diode drop below V+ and one diode drop above V-, but
does not affect the devices’ low switch resistance and
low leakage characteristics. Device operation is
unchanged, and the difference between V+ and V-
should not exceed 17V. These protection diodes are
not recommended when using a single supply if signal
levels must extend to ground.
12
______________________________________________________________________________________
EXTERNAL BLOCKING DIODE
Bipolar Supplies
EXTERNAL BLOCKING DIODE
Single Supply
Figure 1. Overvoltage Protection Using External Blocking
Diodes
In 50Ω systems, signal response is reasonably flat up
to 50MHz (see Typical Operating Characteristics).
Above 20MHz, the on response has several minor
peaks which are highly layout dependent. The problem
is not turning the switch on, but turning it off. The off-
state switch acts like a capacitor, and passes higher
frequencies with less attenuation. At 10MHz, off isola-
tion is about -45dB in 50Ω systems, becoming worse
(approximately 20dB per decade) as frequency
increases. Higher circuit impedances also make off iso-
lation worse. Adjacent channel attenuation is about 3dB
above that of a bare IC socket, and is entirely due to
capacitive coupling.
V+
D1
MAX4051/A
MAX4052/A
V+
MAX4053/A
*
*
COM
NO
*
*
V-
D2
V-
* INTERNAL PROTECTION DIODES
High-Frequency Performance