LM2678SD-5.0 NSC [National Semiconductor], LM2678SD-5.0 Datasheet - Page 12

no-image

LM2678SD-5.0

Manufacturer Part Number
LM2678SD-5.0
Description
Manufacturer
NSC [National Semiconductor]
Datasheet

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
LM2678SD-5.0/NOPB
Manufacturer:
TI
Quantity:
12 000
Part Number:
LM2678SD-5.0/NOPB
Manufacturer:
NSC
Quantity:
249
www.national.com
Application Hints
frequency. With the fixed 260KHz switching frequency of the
LM2678, the output capacitor is selected to provide a unity
gain bandwidth of 40KHz maximum. Each recommended
capacitor value has been chosen to achieve this result.
In some cases multiple capacitors are required either to
reduce the ESR of the output capacitor, to minimize output
ripple (a ripple voltage of 1% of Vout or less is the assumed
performance condition), or to increase the output capaci-
tance to reduce the closed loop unity gain bandwidth (to less
than 40KHz). When parallel combinations of capacitors are
required it has been assumed that each capacitor is the
exact same part type.
The RMS current and working voltage (WV) ratings of the
output capacitor are also important considerations. In a typi-
cal step-down switching regulator, the inductor ripple current
(set to be no more than 30% of the maximum load current by
the inductor selection) is the current that flows through the
output capacitor. The capacitor RMS current rating must be
greater than this ripple current. The voltage rating of the
output capacitor should be greater than 1.3 times the maxi-
mum output voltage of the power supply. If operation of the
system at elevated temperatures is required, the capacitor
voltage rating may be de-rated to less than the nominal room
temperature rating. Careful inspection of the manufacturer’s
specification for de-rating of working voltage with tempera-
ture is important.
INPUT CAPACITOR
Fast changing currents in high current switching regulators
place a significant dynamic load on the unregulated power
source. An input capacitor helps to provide additional current
to the power supply as well as smooth out input voltage
variations.
Like the output capacitor, the key specifications for the input
capacitor are RMS current rating and working voltage. The
RMS current flowing through the input capacitor is equal to
one-half of the maximum dc load current so the capacitor
should be rated to handle this. Paralleling multiple capacitors
proportionally increases the current rating of the total capaci-
tance. The voltage rating should also be selected to be 1.3
times the maximum input voltage. Depending on the unregu-
lated input power source, under light load conditions the
maximum input voltage could be significantly higher than
normal operation and should be considered when selecting
an input capacitor.
The input capacitor should be placed very close to the input
pin of the LM2678. Due to relative high current operation
with fast transient changes, the series inductance of input
connecting wires or PCB traces can create ringing signals at
the input terminal which could possibly propagate to the
output or other parts of the circuitry. It may be necessary in
some designs to add a small valued (0.1µF to 0.47µF)
ceramic type capacitor in parallel with the input capacitor to
prevent or minimize any ringing.
CATCH DIODE
When the power switch in the LM2678 turns OFF, the current
through the inductor continues to flow. The path for this
current is through the diode connected between the switch
output and ground. This forward biased diode clamps the
switch output to a voltage less than ground. This negative
voltage must be greater than −1V so a low voltage drop
(particularly at high current levels) Schottky diode is recom-
mended. Total efficiency of the entire power supply is signifi-
cantly impacted by the power lost in the output catch diode.
(Continued)
12
The average current through the catch diode is dependent
on the switch duty cycle (D) and is equal to the load current
times (1-D). Use of a diode rated for much higher current
than is required by the actual application helps to minimize
the voltage drop and power loss in the diode.
During the switch ON time the diode will be reversed biased
by the input voltage. The reverse voltage rating of the diode
should be at least 1.3 times greater than the maximum input
voltage.
BOOST CAPACITOR
The boost capacitor creates a voltage used to overdrive the
gate of the internal power MOSFET. This improves efficiency
by minimizing the on resistance of the switch and associated
power loss. For all applications it is recommended to use a
0.01µF/50V ceramic capacitor.
ADDITIONAL APPLICATION INFORMATION
When the output voltage is greater than approximately 6V,
and the duty cycle at minimum input voltage is greater than
approximately 50%, the designer should exercise caution in
selection of the output filter components. When an applica-
tion designed to these specific operating conditions is sub-
jected to a current limit fault condition, it may be possible to
observe a large hysteresis in the current limit. This can affect
the output voltage of the device until the load current is
reduced sufficiently to allow the current limit protection circuit
to reset itself.
Under current limiting conditions, the LM267x is designed to
respond in the following manner:
1. At the moment when the inductor current reaches the
2. However, the current limit block is also designed to
3. Thereafter, once the inductor current falls below the
If the output capacitance is sufficiently ‘large’, it may be
possible that as the output tries to recover, the output ca-
pacitor charging current is large enough to repeatedly re-
trigger the current limit circuit before the output has fully
settled. This condition is exacerbated with higher output
voltage settings because the energy requirement of the out-
put capacitor varies as the square of the output voltage
(
A simple test to determine if this condition might exist for a
suspect application is to apply a short circuit across the
output of the converter, and then remove the shorted output
condition. In an application with properly selected external
components, the output will recover smoothly.
Practical values of external components that have been
experimentally found to work well under these specific oper-
ating conditions are C
noted that even with these components, for a device’s cur-
rent limit of I
possibility of the large current limit hysteresis can be mini-
mized is I
output voltage is 18V, then for a desired maximum current of
1.5A, the current limit of the chosen switcher must be con-
firmed to be at least 3A.
SIMPLE DESIGN PROCEDURE
1
2
CV
current limit threshold, the ON-pulse is immediately ter-
minated. This happens for any application condition.
momentarily reduce the duty cycle to below 50% to
avoid subharmonic oscillations, which could cause the
inductor to saturate.
current limit threshold, there is a small relaxation time
during which the duty cycle progressively rises back
above 50% to the value required to achieve regulation.
2
), thus requiring an increased charging current.
CLIM
CLIM
/2. For example, if the input is 24V and the set
, the maximum load current under which the
OUT
= 47µF, L = 22µH. It should be

Related parts for LM2678SD-5.0