Manufacturer Part NumberTNY264PG
ManufacturerPower Integrations
TNY264PG datasheet

Specifications of TNY264PG

Output IsolationIsolatedFrequency Range124 ~ 140kHz
Voltage - Output700VPower (watts)9W
Operating Temperature-40°C ~ 150°CPackage / Case8-DIP (0.300", 7.62mm), 7 Leads
Lead Free Status / RoHS StatusLead free / RoHS CompliantOther names596-1255-5
Page 1
Page 2
Page 3
Page 4
Page 5
Page 6
Page 7
Page 8
Page 9
Page 10
Page 1/22

Download datasheet (761Kb)Embed
TinySwitch-II Family
Enhanced, Energy Effi cient, Low Power
Off-line Switcher
Product Highlights
TinySwitch-II Features Reduce System Cost
Fully integrated auto-restart for short circuit and open loop fault
protection – saves external component costs
Built-in circuitry practically eliminates audible noise with ordinary
dip-varnished transformer
Programmable line undervoltage detect feature prevents power
on/off glitches – saves external components
Frequency jittering dramatically reduces EMI (~10 dB)
– minimizes EMI fi lter component costs
132 kHz operation reduces transformer size – allows use of
EF12.6 or EE13 cores for low cost and small size
Very tight tolerances and negligible temperature variation on key
parameters eases design and lowers cost
Lowest component count switcher solution
Expanded scalable device family for low system cost
Better Cost/Performance over RCC & Linears
Lower system cost than RCC, discrete PWM and other
integrated/hybrid solutions
Cost effective replacement for bulky regulated linears
Simple ON/OFF control – no loop compensation needed
No bias winding – simpler, lower cost transformer
Simple design practically eliminates rework in manufacturing
– Extremely Energy Effi cient
No load consumption <50 mW with bias winding and
<250 mW without bias winding at 265 VAC input
Meets California Energy Commission (CEC), Energy Star, and
EU requirements
Ideal for cell-phone charger and PC standby applications
High Performance at Low Cost
High voltage powered – ideal for charger applications
High bandwidth provides fast turn on with no overshoot
Current limit operation rejects line frequency ripple
Built-in current limit and thermal protection improves safety
TinySwitch-II integrates a 700 V power MOSFET, oscillator, high
voltage switched current source, current limit and thermal
shutdown circuitry onto a monolithic device. The start-up and
operating power are derived directly from the voltage on the
DRAIN pin, eliminating the need for a bias winding and
associated circuitry. In addition, the TinySwitch-II devices
incorporate auto-restart, line undervoltage sense, and frequency
jittering. An innovative design minimizes audio frequency
components in the simple ON/OFF control scheme to practically
eliminate audible noise with standard taped/varnished
UV Resistor
HV DC Input
Figure 1.
Typical Standby Application.
Output Power Table
230 VAC ± 15%
TNY263 P/G
5 W
7.5 W
TNY264 P/G
5.5 W
9 W
TNY265 P/G
8.5 W
11 W
TNY266 P/G
10 W
15 W
TNY267 P/G
13 W
19 W
TNY268 P/G
16 W
23 W
Table 1.
Output Power Table.
1. Minimum continuous power in a typical non-ventilated enclosed adapter
measured at 50 °C ambient.
2. Minimum practical continuous power in an open frame design with adequate
heat sinking, measured at 50 °C ambient (See Key Applications
3. Packages: P: DIP-8B, G: SMD-8B. Please see Part Ordering Information.
transformer construction. The fully integrated auto-restart circuit
safely limits output power during fault conditions such as output
short circuit or open loop, reducing component count and
secondary feedback circuitry cost. An optional line sense resistor
externally programs a line undervoltage threshold, which
eliminates power down glitches caused by the slow discharge of
input storage capacitors present in applications such as standby
supplies. The operating frequency of 132 kHz is jittered to
signifi cantly reduce both the quasi-peak and average EMI,
minimizing fi ltering cost.
85-265 VAC
3.7 W
4.7 W
4 W
6 W
5.5 W
7.5 W
6 W
9.5 W
8 W
12 W
10 W
15 W
February 2009

TNY264PG Summary of contents

  • Page 1

    TNY263-268 ® TinySwitch-II Family Enhanced, Energy Effi cient, Low Power Off-line Switcher Product Highlights TinySwitch-II Features Reduce System Cost Fully integrated auto-restart for short circuit and open loop fault • protection – saves external component costs Built-in circuitry practically eliminates ...

  • Page 2

    TNY263-268 BYPASS (BP) LINE UNDER-VOLTAGE 240 6.3 V ENABLE 1 OSCILLATOR ENABLE/ 1.0 V UNDER- VOLTAGE (EN/UV) Figure 2. Functional Block Diagram. Pin Functional Description DRAIN (D) Pin: Power MOSFET drain connection. Provides ...

  • Page 3

    TinySwitch-II Functional Description TinySwitch-II combines a high voltage power MOSFET switch with a power supply controller in one device. Unlike conventional PWM (pulse width modulator) controllers, TinySwitch-II uses a simple ON/OFF control to regulate the output voltage. The TinySwitch-II controller ...

  • Page 4

    TNY263-268 that cycle. The current limit state machine reduces the current limit threshold by discrete amounts under medium and light loads. The leading edge blanking circuit inhibits the current limit comparator for a short time (t ) after the power ...

  • Page 5

    At high loads, when the EN/UV pin is high (less than 240 μA out of the pin), a switching cycle with the full current limit occurs. At lighter loads, when EN/UV is high, a switching cycle ...

  • Page 6

    TNY263-268 V EN CLOCK D MAX I DRAIN V DRAIN Figure 9. TinySwitch-II Operation at Very Light Load. two main benefi ts. First, for a nominal application, this eliminates the cost of a bias winding and associated components. Secondly, for ...

  • Page 7

    D1 1N4005 D2 1N4005 C1 3.3 μF 85-265 400 V VAC RF1 8.2 Ω Fusible R1 1.2 kΩ 1N4005 1N4005 L1 2.2 mH Figure 14. 2.5 W Constant Voltage, Constant Current Battery Charger with Universal Input (85-265 VAC). ...

  • Page 8

    TNY263-268 A simple constant current circuit is implemented using the V of transistor Q1 to sense the voltage across the current sense resistor R4. When the drop across R4 exceeds the V transistor Q1, it turns on and takes over ...

  • Page 9

    PERFORMANCE SUMMARY Continuous Output Power: 10.24 W ≥ 75% Efficiency: 140 - 375 VDC Input C1 0.01 μ TinySwitch-II U1 TNY266P +12 VDC μ Figure 15 ...

  • Page 10

    TNY263-268 Key Application Considerations TinySwitch-II vs. TinySwitch Table 2 compares the features and performance differences between the TNY254 device of the TinySwitch-II family with the TinySwitch-II family of devices. Many of the new features eliminate the need for or reduce ...

  • Page 11

    ... In addition, the common/ return output connection should be taken directly from the secondary winding pin and not from the Y-capacitor connection point. PC Board Cleaning Power Integrations does not recommend the use of “no clean” fl ux. For the most up-to-date information visit the PI website at: www.powerint.com. 11 ...

  • Page 12

    TNY263-268 Input Filter Capacitor + HV – TOP VIEW C BP Figure 17. Recommended Circuit Board Layout for TinySwitch-II with Undervoltage Lock Out Resistor. 12 Rev. H 02/09 Safety Spacing Y1- Capacitor PRI ...

  • Page 13

    Absolute Maximum Ratings (1,4) DRAIN Voltage .................................. ................ -0 700 V DRAIN Peak Current: TNY263......................................400 mA TNY264.....................................400 mA .................................... TNY265......................................440 mA TNY266.....................................560 mA .................................... TNY267.....................................720 mA TNY268.....................................880 mA EN/UV Voltage ....................................................... -0 EN/UV Current ...

  • Page 14

    TNY263-268 Parameter Symbol Control Functions (cont.) BYPASS Pin V Voltage BP BYPASS Pin V Voltage Hysteresis BPH EN/UV Pin Line Under- I Voltage Threshold LUV Circuit Protection Current Limit I LIMIT Initial Current Limit I INIT Leading Edge t Blanking ...

  • Page 15

    Parameter Symbol Output (cont.) ON-State R Resistance DS(ON) OFF-State Drain I Leakage Current DSS Breakdown BV Voltage DSS Rise Time t R Fall Time t F Drain Supply Voltage Output EN/UV Delay t EN/UV Output Disable t Setup Time DST ...

  • Page 16

    TNY263-268 D EN/ NOTE: This test circuit is not applicable for current limit or output characteristic measurements. Figure 18. TinySwitch-II General Test Circuit. Figure 19. TinySwitch-II Duty Cycle Measurement. 16 Rev. H 02/09 470 Ω ...

  • Page 17

    Typical Performance Characteristics 1.1 1.0 0.9 -50 - 100 125 150 Junction Temperature (°C) Figure 22. Breakdown vs. Temperature. 1.2 1 TNY263/268 0.8 TNY264-266 TNY267 0.6 0.4 0 Temperature ( C) Figure ...

  • Page 18

    TNY263-268 Typical Performance Characteristics (cont.) 1000 100 Scaling Factors: TNY263 TNY264 TNY265 TNY266 10 TNY267 TNY268 1 0 100 200 300 Drain Voltage (V) Figure 28. C vs. Drain Voltage. OSS 18 Rev. H 02/ 1.0 20 ...

  • Page 19

    D S .004 (.10) -E- .240 (6.10) .260 (6.60) Pin 1 .367 (9.32) -D- .387 (9.83) .125 (3.18) .145 (3.68) -T- SEATING PLANE .100 (2.54) BSC .014 (.36) ⊕ .010 (.25) M .022 (.56) www.powerint.com ...

  • Page 20

    TNY263-268 ⊕ .004 (.10) -E- .240 (6.10) .260 (6.60) Pin 1 .100 (2.54) (BSC) .367 (9.32) -D- .387 (9.83) .125 (3.18) .145 (3.68) .032 (.81) .048 (1.22) .037 (.94) .053 (1.35) Part Ordering Information TNY 264 G N ...

  • Page 21

    Revision Notes A – B Corrected fi rst page spacing and sentence in description describing innovative design. Corrected Frequency Jitter in Figure 4 and Frequency Jitter in Parameter Table. Added last sentence to Over Temperature Protection section. Clarifi ed detecting ...

  • Page 22

    ... The products and applications illustrated herein (including transformer construction and circuits external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations patents may be found at www.powerint.com. Power Integrations grants its customers a license under certain patent rights as set forth at http://www ...