EVAL-AD7693CB Analog Devices Inc, EVAL-AD7693CB Datasheet - Page 8

no-image

EVAL-AD7693CB

Manufacturer Part Number
EVAL-AD7693CB
Description
BOARD EVAL FOR AD7693 ADC
Manufacturer
Analog Devices Inc
Series
PulSAR®r
Datasheets

Specifications of EVAL-AD7693CB

Number Of Adc's
1
Number Of Bits
16
Sampling Rate (per Second)
500k
Data Interface
Serial
Inputs Per Adc
1 Differential
Input Range
±VREF
Power (typ) @ Conditions
18mW @ 500kSPS
Voltage Supply Source
Single
Operating Temperature
-40°C ~ 85°C
Utilized Ic / Part
AD7693
Lead Free Status / RoHS Status
Contains lead / RoHS non-compliant
AD7693
TERMINOLOGY
Least Significant Bit (LSB)
The LSB is the smallest increment that can be represented by a
converter. For a differential analog-to-digital converter with N
bits of resolution, the LSB expressed in volts is
Integral Nonlinearity Error (INL)
INL refers to the deviation of each individual code from a line
drawn from negative full scale through positive full scale. The
point used as negative full scale occurs ½ LSB before the first
code transition. Positive full scale is defined as a level 1½ LSB
beyond the last code transition. The deviation is measured from
the middle of each code to the true straight line (see Figure 26).
Differential Nonlinearity Error (DNL)
In an ideal ADC, code transitions are 1 LSB apart. DNL is the
maximum deviation from this ideal value. It is often specified in
terms of resolution for which no missing codes are guaranteed.
Zero Error
Zero error is the difference between the ideal midscale voltage,
that is, 0 V, from the actual voltage producing the midscale
output code, that is, 0 LSB.
Gain Error
The first transition (from 100 ... 00 to 100 ... 01) should occur at
a level ½ LSB above nominal negative full scale (−4.999847 V
for the ±5 V range). The last transition (from 011 … 10 to
011 … 11) should occur for an analog voltage 1½ LSB below the
nominal full scale (+4.999771 V for the ±5 V range.) The gain
error is the deviation of the difference between the actual level
of the last transition and the actual level of the first transition
from the difference between the ideal levels.
Aperture Delay
Aperture delay is the measure of the acquisition performance. It
is the time between the rising edge of the CNV input and when
the input signal is held for a conversion.
LSB
(V) =
2
V
2
REF
N
Rev. 0 | Page 8 of 24
Transient Response
Transient response is the time required for the ADC to accurately
acquire its input after a full-scale step function is applied.
Dynamic Range
Dynamic range is the ratio of the rms value of the full scale to
the total rms noise measured with the inputs shorted together.
The value for dynamic range is expressed in decibels.
Signal-to-Noise Ratio (SNR)
SNR is the ratio of the rms value of the actual input signal to the
rms sum of all other spectral components below the Nyquist
frequency, excluding harmonics and dc. The value for SNR is
expressed in decibels.
Signal-to-(Noise + Distortion) Ratio (SINAD)
SINAD is the ratio of the rms value of the actual input signal to
the rms sum of all other spectral components below the Nyquist
frequency, including harmonics but excluding dc. The value for
SINAD is expressed in decibels.
Total Harmonic Distortion (THD)
THD is the ratio of the rms sum of the first five harmonic
components to the rms value of a full-scale input signal and is
expressed in decibels.
Spurious-Free Dynamic Range (SFDR)
SFDR is the difference, in decibels, between the rms amplitude
of the input signal and the peak spurious signal.
Effective Number of Bits (ENOB)
ENOB is a measurement of the resolution with a sine wave
input. It is related to SINAD by the following formula:
and is expressed in bits.
ENOB = (SINAD
dB
− 1.76)/6.02

Related parts for EVAL-AD7693CB