PIC12CE673-04/P Microchip Technology, PIC12CE673-04/P Datasheet - Page 408

no-image

PIC12CE673-04/P

Manufacturer Part Number
PIC12CE673-04/P
Description
IC MCU OTP 1KX14 A/D&EE 8DIP
Manufacturer
Microchip Technology
Series
PIC® 12Cr

Specifications of PIC12CE673-04/P

Core Size
8-Bit
Program Memory Size
1.75KB (1K x 14)
Core Processor
PIC
Speed
4MHz
Peripherals
POR, WDT
Number Of I /o
5
Program Memory Type
OTP
Eeprom Size
16 x 8
Ram Size
128 x 8
Voltage - Supply (vcc/vdd)
3 V ~ 5.5 V
Data Converters
A/D 4x8b
Oscillator Type
Internal
Operating Temperature
0°C ~ 70°C
Package / Case
8-DIP (0.300", 7.62mm)
Controller Family/series
PIC12
No. Of I/o's
6
Eeprom Memory Size
16Byte
Ram Memory Size
128Byte
Cpu Speed
4MHz
No. Of Timers
1
Processor Series
PIC12C
Core
PIC
Data Bus Width
8 bit
Data Ram Size
128 B
Maximum Clock Frequency
4 MHz
Number Of Programmable I/os
5
Number Of Timers
8
Maximum Operating Temperature
+ 70 C
Mounting Style
Through Hole
3rd Party Development Tools
52715-96, 52716-328, 52717-734
Development Tools By Supplier
ICE2000
Minimum Operating Temperature
0 C
On-chip Adc
8
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
ISPICR1 - ADAPTER IN-CIRCUIT PROGRAMMINGAC124001 - MODULE SKT PROMATEII 8DIP/SOIC
Connectivity
-
Lead Free Status / Rohs Status
 Details

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
PIC12CE673-04/P
Manufacturer:
Microchip
Quantity:
486
PICmicro MID-RANGE MCU FAMILY
22.3
DS31022A-page 22-6
A/D Acquisition Requirements
For the A/D converter to meet its specified accuracy, the charge holding capacitor (C
be allowed to fully charge to the input channel voltage level. The analog input model is shown in
Figure
directly affect the time required to charge the capacitor C
ance varies over the device voltage (V
impedance for analog sources is 10 k . After the analog input channel is selected (changed)
this acquisition must be done before the conversion can be started.
To calculate the minimum acquisition time,
that 1/2 LSb error is used (512 steps for the A/D). The 1/2 LSb error is the maximum error allowed
for the A/D to meet its specified resolution.
Equation 22-1:Acquisition Time
Equation 22-2:A/D Minimum Charging Time
Example 22-1
lation is based on the following system assumptions.
Rs
Conversion Error
V
Temperature
V
Example 22-1:
T
V
or
Tc
T
T
T
T
DD
HOLD
ACQ
ACQ
ACQ
C
ACQ
HOLD
=
22-3. The source impedance (R
=
=
=
=
=
=
=
Amplifier Settling Time +
Holding Capacitor Charging Time +
Temperature Coefficient
T
T
5 s + Tc + [(Temp - 25 C)(0.05 s/ C)]
-C
-51.2 pF (1 k + 7 k + 10 k ) ln(0.0020)
-51.2 pF (18 k ) ln(0.0020)
-0.921 s (-6.2146)
5.724 s
5 s + 5.724 s + [(50 C - 25 C)(0.05 s/ C)]
10.724 s + 1.25 s
11.974 s
(V
-(51.2 pF)(1 k + R
shows the calculation of the minimum required acquisition time T
AMP
AMP
HOLD
REF
Calculating the Minimum Required Acquisition Time
+ T
+ T
- (V
(R
=
=
=
=
C
C
IC
REF
+ T
+ T
+ R
/512)) • (1 - e
COFF
COFF
10 k
1/2 LSb
5V
50 C (system max.)
0V @ time = 0
SS
+ R
SS
Rss = 7 k
+ R
S
) ln(1/512)
S
DD
) and the internal sampling switch (R
S
) ln(1/511)
(-Tc/C
Equation 22-1
), see
HOLD
Figure
(R
IC
HOLD
(see graph in
+ R
22-3. The maximum recommended
may be used. This equation assumes
SS
. The sampling switch (R
+ R
S
))
1997 Microchip Technology Inc.
)
Figure
22-3)
ACQ
SS
) impedance
. This calcu-
HOLD
SS
) imped-
) must

Related parts for PIC12CE673-04/P