PIC16F87-I/SS Microchip Technology, PIC16F87-I/SS Datasheet - Page 142

IC MCU FLASH 4KX14 EEPROM 20SSOP

PIC16F87-I/SS

Manufacturer Part Number
PIC16F87-I/SS
Description
IC MCU FLASH 4KX14 EEPROM 20SSOP
Manufacturer
Microchip Technology
Series
PIC® 16Fr

Specifications of PIC16F87-I/SS

Program Memory Type
FLASH
Program Memory Size
7KB (4K x 14)
Package / Case
20-SSOP
Core Processor
PIC
Core Size
8-Bit
Speed
20MHz
Connectivity
I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
16
Eeprom Size
256 x 8
Ram Size
368 x 8
Voltage - Supply (vcc/vdd)
4 V ~ 5.5 V
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Processor Series
PIC16F
Core
PIC
Data Bus Width
8 bit
Data Ram Size
368 B
Interface Type
SSP/USART
Maximum Clock Frequency
20 MHz
Number Of Programmable I/os
16
Number Of Timers
3
Operating Supply Voltage
2 V to 5.5 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
52715-96, 52716-328, 52717-734
Development Tools By Supplier
PG164130, DV164035, DV244005, DV164005, PG164120, ICE2000, DM163014
Minimum Operating Temperature
- 40 C
On-chip Adc
10 bit
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
XLT20SS-1 - SOCKET TRANSITION 18DIP 20SSOPAC164307 - MODULE SKT FOR PM3 28SSOP
Data Converters
-
Lead Free Status / Rohs Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
PIC16F87-I/SS
Manufacturer:
SEMELAB
Quantity:
77
PICmicro MID-RANGE MCU FAMILY
9.1
DS31009A-page 9-2
Introduction
General purpose I/O pins can be considered the simplest of peripherals. They allow the
PICmicro™ to monitor and control other devices. To add flexibility and functionality to a device,
some pins are multiplexed with an alternate function(s). These functions depend on which
peripheral features are on the device. In general, when a peripheral is functioning, that pin may
not be used as a general purpose I/O pin.
For most ports, the I/O pin’s direction (input or output) is controlled by the data direction register,
called the TRIS register. TRIS<x> controls the direction of PORT<x>. A ‘1’ in the TRIS bit corre-
sponds to that pin being an input, while a ‘0’ corresponds to that pin being an output. An easy
way to remember is that a ‘1’ looks like an I (input) and a ‘0’ looks like an O (output).
The PORT register is the latch for the data to be output. When the PORT is read, the device reads
the levels present on the I/O pins (not the latch). This means that care should be taken with
read-modify-write commands on the ports and changing the direction of a pin from an input to an
output.
Figure 9-1
be multiplexed onto the I/O pin. Reading the PORT register reads the status of the pins whereas
writing to it will write to the port latch. All write operations (such as BSF and BCF instructions) are
read-modify-write operations. Therefore a write to a port implies that the port pins are read, this
value is modified, and then written to the port data latch.
Figure 9-1: Typical I/O Port
WR PORT
WR TRIS
RD PORT
Data bus
Note: I/O pin has protection diodes to V
shows a typical I/O port. This does not take into account peripheral functions that may
Data Latch
TRIS Latch
D
CK
D
CK
RD TRIS
Q
Q
Q
Q
DD
and V
Q
SS
EN
.
D
V
V
P
N
DD
SS
1997 Microchip Technology Inc.
Trigger
Schmitt
TTL or
I/O pin

Related parts for PIC16F87-I/SS