PIC16F877-20/P Microchip Technology, PIC16F877-20/P Datasheet - Page 428

IC MCU FLASH 8KX14 EE 40DIP

PIC16F877-20/P

Manufacturer Part Number
PIC16F877-20/P
Description
IC MCU FLASH 8KX14 EE 40DIP
Manufacturer
Microchip Technology
Series
PIC® 16Fr

Specifications of PIC16F877-20/P

Core Size
8-Bit
Program Memory Size
14KB (8K x 14)
Core Processor
PIC
Speed
20MHz
Connectivity
I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
33
Program Memory Type
FLASH
Eeprom Size
256 x 8
Ram Size
368 x 8
Voltage - Supply (vcc/vdd)
4 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
External
Operating Temperature
0°C ~ 70°C
Package / Case
40-DIP (0.600", 15.24mm)
Controller Family/series
PIC16F
No. Of I/o's
33
Eeprom Memory Size
256Byte
Ram Memory Size
368Byte
Cpu Speed
20MHz
No. Of Timers
3
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
444-1001 - DEMO BOARD FOR PICMICRO MCU
Lead Free Status / RoHS Status
Lead free / RoHS Compliant, Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
PIC16F877-20/P
Manufacturer:
MICROCHIP
Quantity:
510
Part Number:
PIC16F877-20/P
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
Part Number:
PIC16F877-20/PQ
Manufacturer:
LT
Quantity:
1 944
Part Number:
PIC16F877-20/PQ
Manufacturer:
Microchip Technology
Quantity:
10 000
Part Number:
PIC16F877-20/PT
Manufacturer:
NUVOTON
Quantity:
5 600
Part Number:
PIC16F877-20/PT
Manufacturer:
Microchip Technology
Quantity:
1 820
Part Number:
PIC16F877-20/PT
Manufacturer:
Microchip Technology
Quantity:
10 000
Part Number:
PIC16F877-20/PT
Manufacturer:
MIC
Quantity:
20 000
Part Number:
PIC16F877-20/PT
0
PICmicro MID-RANGE MCU FAMILY
23.4
DS31023A-page 23-6
A/D Acquisition Requirements
For the A/D converter to meet its specified accuracy, the charge holding capacitor (C
be allowed to fully charge to the input channel voltage level. The analog input model is shown in
Figure
directly affect the time required to charge the capacitor C
ance varies over the device voltage (V
ance for analog sources is 10 k . As the impedance is decreased, the acquisition time may be
decreased. After the analog input channel is selected (changed) this acquisition must be done
before the conversion can be started.
To calculate the minimum acquisition time,
that 1/2 LSb error is used (1024 steps for the A/D). The 1/2 LSb error is the maximum error
allowed for the A/D to meet its specified resolution.
Equation 23-1:
Equation 23-2:
Example 23-1
This calculation is based on the following application system assumptions.
C
Rs
Conversion Error
V
Temperature
V
Example 23-1:
T
T
Temperature coefficient is only required for temperatures > 25 C.
T
T
T
DD
HOLD
HOLD
V
or
Tc
ACQ
ACQ
ACQ
C
ACQ
HOLD
=
=
23-3. The source impedance (R
=
=
=
=
Amplifier Settling Time +
Holding Capacitor Charging Time +
Temperature Coefficient
T
=
=
T
2 s + Tc + [(Temp - 25 C)(0.05 s/ C)]
-C
-120 pF (1 k + 7 k + 10 k ) ln(0.0004885)
-120 pF (18 k ) ln(0.0004885)
-2.16 s (-7.6241)
16.47 s
2 s + 16.47 s + [(50 C - 25 C)(0.05 s/ C)]
18.47 s + 1.25 s
19.72 s
shows the calculation of the minimum required acquisition time T
AMP
AMP
HOLD
Acquisition Time
A/D Minimum Charging Time
(V
-(120 pF)(1 k + R
Calculating the Minimum Required Acquisition Time (Case 1)
+ T
+ T
REF
(R
=
=
=
=
=
C
C
- (V
IC
+ T
+ T
+ R
Preliminary
120 pF
10 k
1/2 LSb
5V
50 C (system max.)
0V @ time = 0
REF
COFF
COFF
SS
/2048)) • (1 - e
+ R
Rss = 7 k
SS
S
DD
) ln(1/2047)
S
+ R
),
) and the internal sampling switch (R
Equation 23-1
Figure
S
) ln(1/2047)
(-Tc/C
23-3. The maximum recommended imped-
(see graph in
HOLD
HOLD
may be used. This equation assumes
(R
IC
. The sampling switch (R
+ R
SS
Figure
1997 Microchip Technology Inc.
+ R
S
))
)
23-3)
ACQ
SS
) impedance
.
HOLD
SS
) imped-
) must

Related parts for PIC16F877-20/P