ATMEGA16M1-MU Atmel, ATMEGA16M1-MU Datasheet - Page 8

no-image

ATMEGA16M1-MU

Manufacturer Part Number
ATMEGA16M1-MU
Description
IC MCU AVR 16K FLASH 32VQFN
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheets

Specifications of ATMEGA16M1-MU

Core Processor
AVR
Core Size
8-Bit
Speed
16MHz
Connectivity
CAN, LIN, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Program Memory Size
16KB (8K x 16)
Program Memory Type
FLASH
Eeprom Size
512 x 8
Ram Size
1K x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Data Converters
A/D 11x10b; D/A 1x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
32-VQFN Exposed Pad, 32-HVQFN, 32-SQFN, 32-DHVQFN
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Number Of I /o
-
2.2.5
2.2.6
2.2.7
2.2.8
8
ATmega16M1/32M1/64M1
Port D (PD7..PD0)
Port E (PE2..0) RESET/ XTAL1/XTAL2
AVCC
AREF
Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port D output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port D pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port D pins are tri-stated when a reset condition becomes active,
even if the clock is not running.
Port D also serves the functions of various special features of the ATmega16M1/32M1/64M1 as
listed on
Port E is an 3-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port E output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port E pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port E pins are tri-stated when a reset condition becomes active,
even if the clock is not running.
If the RSTDISBL Fuse is programmed, PE0 is used as an I/O pin. Note that the electrical char-
acteristics of PE0 differ from those of the other pins of Port E.
If the RSTDISBL Fuse is unprogrammed, PE0 is used as a Reset input. A low level on this pin
for longer than the minimum pulse length will generate a Reset, even if the clock is not running.
The minimum pulse length is given in
pulses are not guaranteed to generate a Reset.
Depending on the clock selection fuse settings, PE1 can be used as input to the inverting Oscil-
lator amplifier and input to the internal clock operating circuit.
Depending on the clock selection fuse settings, PE2 can be used as output from the inverting
Oscillator amplifier.
The various special features of Port E are elaborated in
81
AVCC is the supply voltage pin for the A/D Converter, D/A Converter, Current source. It should
be externally connected to V
be connected to V
This is the analog reference pin for the A/D Converter.
and
“Clock Systems and their Distribution” on page
page
78.
CC
through a low-pass filter.
CC
, even if the ADC, DAC are not used. If the ADC is used, it should
“System and Reset Characteristics” on page
27.
“Alternate Functions of Port E” on page
8209DS–AVR–11/10
311. Shorter

Related parts for ATMEGA16M1-MU