PIC18F4580T-I/ML Microchip Technology, PIC18F4580T-I/ML Datasheet - Page 246

IC PIC MCU FLASH 16KX16 44QFN

PIC18F4580T-I/ML

Manufacturer Part Number
PIC18F4580T-I/ML
Description
IC PIC MCU FLASH 16KX16 44QFN
Manufacturer
Microchip Technology
Series
PIC® 18Fr

Specifications of PIC18F4580T-I/ML

Core Processor
PIC
Core Size
8-Bit
Speed
40MHz
Connectivity
CAN, I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number Of I /o
36
Program Memory Size
32KB (16K x 16)
Program Memory Type
FLASH
Eeprom Size
256 x 8
Ram Size
1.5K x 8
Voltage - Supply (vcc/vdd)
4.2 V ~ 5.5 V
Data Converters
A/D 11x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
44-QFN
Lead Free Status / RoHS Status
Contains lead / RoHS non-compliant
PIC18F2480/2580/4480/4580
19.2.4
During Sleep mode, all clocks to the EUSART are
suspended. Because of this, the Baud Rate Generator
is inactive and a proper byte reception cannot be
performed. The auto-wake-up feature allows the con-
troller to wake-up due to activity on the RX/DT line,
while the EUSART is operating in Asynchronous mode.
The auto-wake-up feature is enabled by setting the
WUE bit (BAUDCON<1>). Once set, the typical receive
sequence on RX/DT is disabled and the EUSART
remains in an Idle state, monitoring for a wake-up event
independent of the CPU mode. A wake-up event con-
sists of a high-to-low transition on the RX/DT line. (This
coincides with the start of a Sync Break or a Wake-up
Signal character for the LIN/J2602 protocol.)
Following a wake-up event, the module generates an
RCIF interrupt. The interrupt is generated synchro-
nously to the Q clocks in normal operating modes
(Figure 19-8) and asynchronously, if the device is in
Sleep mode (Figure 19-9). The interrupt condition is
cleared by reading the RCREG register.
The WUE bit is automatically cleared once a low-to-high
transition is observed on the RX line following the
wake-up event. At this point, the EUSART module is in
Idle mode and returns to normal operation. This signals
to the user that the Sync Break event is over.
19.2.4.1
Since auto-wake-up functions by sensing rising edge
transitions on RX/DT, information with any state
changes before the Stop bit may signal a false
FIGURE 19-8:
FIGURE 19-9:
DS39637D-page 246
RX/DT Line
Note 1:
Note 1:
RX/DT Line
WUE bit
WUE bit
OSC1
OSC1
2:
RCIF
RCIF
(1)
(2)
The EUSART remains in Idle while the WUE bit is set.
If the wake-up event requires long oscillator warm-up time, the auto-clear of the WUE bit can occur while the stposc signal is still active.
This sequence should not depend on the presence of Q clocks.
The EUSART remains in Idle while the WUE bit is set.
AUTO-WAKE-UP ON SYNC BREAK
CHARACTER
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
Special Considerations Using
Auto-Wake-up
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
Bit set by user
Bit set by user
Sleep Command Executed
AUTO-WAKE-UP BIT (WUE) TIMINGS DURING NORMAL OPERATION
AUTO-WAKE-UP BIT (WUE) TIMINGS DURING SLEEP
Q1
Sleep Ends
End-of-Character (EOC) and cause data or framing
errors. To work properly, therefore, the initial character in
the transmission must be all ‘0’s. This can be 00h
(8 bits) for standard RS-232 devices or 000h (12 bits) for
LIN/J2602 bus.
Oscillator start-up time must also be considered,
especially in applications using oscillators with longer
start-up intervals (i.e., XT or HS mode). The Sync
Break (or Wake-up Signal) character must be of suffi-
cient length and be followed by a sufficient interval to
allow enough time for the selected oscillator to start
and provide proper initialization of the EUSART.
19.2.4.2
The timing of WUE and RCIF events may cause some
confusion when it comes to determining the validity of
received data. As noted, setting the WUE bit places the
EUSART in an Idle mode. The wake-up event causes
a receive interrupt by setting the RCIF bit. The WUE bit
is cleared after this when a rising edge is seen on
RX/DT. The interrupt condition is then cleared by read-
ing the RCREG register. Ordinarily, the data in RCREG
will be dummy data and should be discarded.
The fact that the WUE bit has been cleared (or is still
set) and the RCIF flag is set should not be used as an
indicator of the integrity of the data in RCREG. Users
should consider implementing a parallel method in
firmware to verify received data integrity.
To assure that no actual data is lost, check the RCIDL
bit to verify that a receive operation is not in process. If
a receive operation is not occurring, the WUE bit may
then be set just prior to entering the Sleep mode.
Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
Cleared due to user read of RCREG
Cleared due to user read of RCREG
Special Considerations Using
the WUE Bit
© 2009 Microchip Technology Inc.
Note 1
Auto-Cleared
Auto-Cleared

Related parts for PIC18F4580T-I/ML