ADF7012BRUZ Analog Devices Inc, ADF7012BRUZ Datasheet - Page 17

IC XMITTER ASK/FSK/GFSK 24TSSOP

ADF7012BRUZ

Manufacturer Part Number
ADF7012BRUZ
Description
IC XMITTER ASK/FSK/GFSK 24TSSOP
Manufacturer
Analog Devices Inc
Datasheet

Specifications of ADF7012BRUZ

Frequency
75MHz ~ 1GHz
Applications
Data Transfer, RKE, Remote Control/Security Systems
Modulation Or Protocol
ASK, FSK, GFSK, OOK
Data Rate - Maximum
179.2 kbps
Power - Output
-16dBm ~ 14dBm
Current - Transmitting
35mA
Data Interface
PCB, Surface Mount
Antenna Connector
PCB, Surface Mount
Voltage - Supply
2.3 V ~ 3.6 V
Operating Temperature
-40°C ~ 85°C
Package / Case
24-TSSOP
Transmitting Current
16mA
Data Rate
179.2Kbps
Frequency Range
75MHz To 1GHz
Rf Ic Case Style
TSSOP
No. Of Pins
24
Supply Voltage Range
2.3V To 3.6V
Operating Temperature (min)
-40C
Operating Temperature (max)
85C
Operating Temperature Classification
Industrial
Product Depth (mm)
4.4mm
Operating Supply Voltage (min)
2.3V
Operating Supply Voltage (typ)
2.5/3.3V
Operating Supply Voltage (max)
3.6V
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
EVAL-ADF7012DBZ4 - BOARD EVALUATION DB4 FOR ADF7012EVAL-ADF7012DBZ3 - BOARD EVALUATION DB3 FOR ADF7012EVAL-ADF7012DBZ2 - BOARD EVALUATION DB2 FOR ADF7012EVAL-ADF7012DBZ1 - BOARD EVALUATION DB1 FOR ADF7012EVAL-ADF7012DBZ5 - BOARD DAUGHTER FOR ADF7012
Features
-
Memory Size
-
Lead Free Status / Rohs Status
Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ADF7012BRUZ
Manufacturer:
AD
Quantity:
9 458
Part Number:
ADF7012BRUZ
Manufacturer:
ADI/亚德诺
Quantity:
20 000
Part Number:
ADF7012BRUZ-RL
Manufacturer:
ADI/亚德诺
Quantity:
20 000
THEORY OF OPERATION
CHOOSING THE EXTERNAL INDUCTOR VALUE
The ADF7012 allows operation at many different frequencies by
choosing the external VCO inductor to give the correct output
frequency. Figure 36 shows both the minimum and maximum
frequency vs. the inductor value. These are measurements based
on 0603 CS type inductors from Coilcraft, and are intended as
guidelines in choosing the inductor because board layout and
inductor type varies between applications.
The inductor value should be chosen so that the VCO is cen-
tered at the correct frequency. When locked, the VCO tuning
voltage can be between 0.2 V and 2.1 V. This voltage can be
measured at Pin 18 (VCO
temperature and from part to part, an inductor should be
chosen so that the tuning voltage is ~1 V at the desired output
frequency.
For frequencies between 270 MHz and 550 MHz, it is recom-
mended to operate the VCO at twice the desired output
frequency and use the divide-by-2 option. This ensures reliable
operation over temperature and supply.
For frequencies between 130 MHz and 270 MHz, it is recom-
mended to operate the VCO at four times the desired output
frequency and use the divide-by-4 option.
For frequencies below 130 MHz, it is best to use the divide-
by-8 option. It is not necessary to use the VCO divider for
frequencies above 550 MHz.
ADIsimSRD Design Studio is a design tool which can perform
the frequency calculations for the ADF7012, and is available at
www.analog.com.
1200
1100
1000
900
800
700
600
500
400
300
Figure 36. Output Frequency vs. External Inductor Value
0
5
10
IN
I
BIAS
). To ensure operation over
INDUCTANCE (nH)
= 2.0 mA.
15
20
25
MIN (meas)
MAX (meas)
MIN (eqn)
MAX (eqn)
30
35
Rev. A | Page 17 of 28
CHOOSING THE CRYSTAL/PFD VALUE
The choice of crystal value is an important one. The PFD
frequency must be the same as the crystal value or an integer
division of it. The PFD determines the phase noise, spurious
levels and location, deviation frequency, and the data rate in
the case of GFSK. The following sections describe some factors
to consider when choosing the crystal value.
Standard Crystal Values
Standard crystal values are 3.6864 MHz, 4 MHz, 4.096 MHz,
4.9152 MHz, 7.3728 MHz, 9.8304 MHz, 10 MHz, 11.0592 MHz,
12 MHz, and 14.4792 MHz. Crystals with these values are
usually available in stock and cost less than crystals with
nonstandard values.
Reference Spurious Levels
Reference spurious levels (spurs) occur at multiples of the
PFD frequency. The reference spur closest to the carrier is
usually highest with the spur further out being attenuated by
the loop filter. The level of reference spur is lower for lower
PFD frequencies. In designs with high output power where
spurious levels are the main concern, a lower PFD frequency
(<5 MHz) may be desirable.
Beat Note Spurs
Beat note spurs are spurs occurring for very small or very large
values in the fractional register. These are quickly attenuated by
the loop filter. Selection of the PFD therefore determines their
location, and ensures that they have negligible effect on the
transmitter spectrum.
Phase Noise
The phase noise of a frequency synthesizer improves by 3 dB
for every doubling of the PFD frequency. Because ACP is
related to the phase noise, the PFD may be increased to reduce
the ACP in the system. PFD frequencies of < 5 MHz typically
deliver sufficient phase noise performance for most systems.
Deviation Frequency
The deviation frequency is adjustable in steps of
To get the exact deviation frequency required, ensure F
factor of the desired deviation.
F
STEP
(
Hz
)
=
F
2
PFD
14
ADF7012
STEP
is a
(10)

Related parts for ADF7012BRUZ