IR3475MTR1PBF International Rectifier, IR3475MTR1PBF Datasheet - Page 17

no-image

IR3475MTR1PBF

Manufacturer Part Number
IR3475MTR1PBF
Description
IC BUCK SYNC ADJ 10A PQFN
Manufacturer
International Rectifier
Series
SupIRBuck™r
Type
Step-Down (Buck), PWM - Current Moder
Datasheet

Specifications of IR3475MTR1PBF

Internal Switch(s)
Yes
Synchronous Rectifier
Yes
Number Of Outputs
1
Voltage - Output
0.5 V ~ 12 V
Current - Output
10A
Frequency - Switching
Up to 750kHz
Voltage - Input
3 V ~ 27 V
Operating Temperature
-40°C ~ 125°C
Mounting Type
*
Package / Case
*
Primary Input Voltage
27V
No. Of Outputs
1
Output Voltage
12V
Output Current
10A
No. Of Pins
17
Operating Temperature Range
-40°C To +125°C
Peak Reflow Compatible (260 C)
Yes
Rohs Compliant
Yes
Leaded Process Compatible
Yes
Part Status
Preferred
Package
PQFN / 4 x 5
Circuit
Single Output
Iout (a)
10
Switch Freq (khz)
0 - 750
Input Range (v)
3.0 - 27
Output Range (v)
0.5 - 12
Ocp Otp Uvlo Pre-bias Soft Start And
Constant On-Time + PGOOD + EN + Temp Comp OCP
Digital Home Media
Yes
Mobile Computing
Yes
Industrial 24v Input
Yes
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
STABILITY CONSIDERATIONS  
Constant‐on‐time control is a fast, ripple based control 
scheme. Unstable operation can occur if certain conditions 
are not met. The system instability is usually caused by: 
Switching noise coupled to FB input:  
This causes the PWM comparator to trigger prematurely 
after the 500ns minimum on‐time for lower MOSFET.  
It will result in double or multiple pulses every switching 
cycle instead of the expected single pulse. Double pulsing 
can causes higher output voltage ripple, but in most 
application it will not affect operation. This can usually be 
prevented by careful layout of the ground plane and the  
FB sensing trace. 
Steady state ripple on FB pin being too small:  
The PWM comparator in IR3475 requires minimum  
7mVp‐p ripple voltage to operate stably. Not enough ripple 
will result in similar double pulsing issue described above. 
Solving this may require using output capacitors with 
higher ESR.  
ESR loop instability:  
The stability criteria of constant on‐time is:  
 
 
If ESR is too small that this criteria is violated then sub‐
harmonic oscillation will occur. This is similar to the 
instability problem of peak‐current‐mode control with 
D>0.5. Increasing ESR is the most effective way to stabilize 
the system, but the tradeoff is the larger output voltage 
ripple.  
System with all ceramic output capacitors:  
For applications with all ceramic output capacitors, the ESR 
is usually too small to meet the stability criteria. In these 
applications, external slope compensation is necessary to 
make the loop stable. The ramp injection circuit, composed 
of R6, C13, and C14, shown in Figure 4 is required.  
The inductor current ripple sensed by R6 and C13 is AC 
coupled to the FB pin through C14. C14 is usually chosen 
between 1 to 10nF, and C13 between 10 to 100nF. R6 
should then be chosen such that L/DCR = C13*R6.  
17
ESR
February 16, 2011  |  ADVANCED DATASHEET  |  V1.8  |  PD97602
C
OUT
T
ON
2
10A Highly Integrated SupIRBuck
LAYOUT RECOMMENDATIONS 
Bypass Capacitor:  
As VCC bypass capacitor, a 1µF high quality ceramic 
capacitor should be placed on the same side as the IR3475 
and connected to VCC and PGND pins directly. A 1µF 
ceramic capacitor should be connected from 3VCBP to 
GND to avoid noise coupling into controller circuits. For 
single‐ground designs, a resistor (R12) in the range of 5 to 
10Ω in series with the 1µF capacitor as shown in Figure 4 is 
recommended.  
Boot Circuit:  
C
reduce the impedance when the upper MOSFET turns on.  
Power Stage:  
Figure 30 shows the current paths and their directions  
for the on and off periods. The on time path has low 
average DC current and high AC current.  Therefore, it is 
recommended to place the input ceramic capacitor, upper, 
and lower MOSFET in a tight loop as shown in Figure 30.  
The purpose of the tight loop from the input ceramic 
capacitor is to suppress the high frequency (10MHz range) 
switching noise and reduce Electromagnetic Interference 
(EMI).  If this path has high inductance, the circuit will 
cause voltage spikes and ringing, and increase the 
switching loss. The off time path has low AC and high 
average DC current. Therefore, it should be laid out with  
a tight loop and wide trace at both ends of the inductor. 
Lowering the loop resistance reduces the power loss. The 
typical resistance value of 1‐ounce copper thickness is 
0.5mΩ per square inch. 
BOOT
 should be placed near the BOOT and PHASE pins to 
Q1
Q2
Figure 30: Current Path of Power Stage 
TM
 
IR3475
 

Related parts for IR3475MTR1PBF