ADF4108BCPZ Analog Devices Inc, ADF4108BCPZ Datasheet - Page 16

IC PLL FREQUENCY SYNTH 20-LFCSP

ADF4108BCPZ

Manufacturer Part Number
ADF4108BCPZ
Description
IC PLL FREQUENCY SYNTH 20-LFCSP
Manufacturer
Analog Devices Inc
Type
Clock/Frequency Synthesizer (RF)r
Datasheet

Specifications of ADF4108BCPZ

Pll
Yes
Input
CMOS
Output
Clock
Number Of Circuits
1
Ratio - Input:output
2:1
Differential - Input:output
Yes/No
Frequency - Max
8GHz
Divider/multiplier
No/No
Voltage - Supply
3.2 V ~ 3.6 V
Operating Temperature
-40°C ~ 85°C
Mounting Type
Surface Mount
Package / Case
20-LFCSP
Frequency-max
8GHz
Pll Type
Frequency Synthesis
Frequency
8GHz
Supply Current
15mA
Supply Voltage Range
3.2V To 3.6V
Digital Ic Case Style
LFCSP
No. Of Pins
20
Operating Temperature Range
-40°C To +85°C
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
EVAL-ADF4108EBZ1 - BOARD EVAL FOR ADF4108
Lead Free Status / RoHS Status
Lead free / RoHS Compliant, Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ADF4108BCPZ
Manufacturer:
ADI/亚德诺
Quantity:
20 000
ADF4108
FUNCTION LATCH
The on-chip function latch is programmed with C2 and C1 set
to 1 and 0, respectively. Figure 18 shows the input data format
for programming the function latch.
Counter Reset
DB2 (F1) is the counter reset bit. When this bit is 1, the R
counter and the AB counters are reset. For normal operation,
this bit should be 0. Upon powering up, the F1 bit needs to be
disabled (set to 0). Then, the N counter resumes counting in
close alignment with the R counter. (The maximum error is one
prescaler cycle.)
Power-Down
DB3 (PD1) and DB21 (PD2) provide programmable power-
down modes. They are enabled by the CE pin.
When the CE pin is low, the device is immediately disabled
regardless of the states of PD2 and PD1.
In the programmed asynchronous power-down, the device
powers down immediately after latching a 1 into the PD1 bit,
with the condition that PD2 has been loaded with a 0.
In the programmed synchronous power-down, the device
power-down is gated by the charge pump to prevent unwanted
frequency jumps. Once the power-down is enabled by writing a
1 into PD1 (on condition that a 1 has also been loaded to PD2),
the device goes into power-down on the occurrence of the next
charge pump event.
When a power-down is activated (either synchronous or
asynchronous mode, including CE pin activated power-down),
the following events occur:
MUXOUT Control
The on-chip multiplexer is controlled by M3, M2, and M1 on
the ADF4108. Figure 18 shows the truth table.
Fastlock Enable Bit
DB9 of the function latch is the fastlock enable bit. Fastlock is
enabled only when this bit is 1.
Fastlock Mode Bit
DB10 of the function latch is the fastlock mode bit. When
fastlock is enabled, this bit determines which fastlock mode is
All active dc current paths are removed.
The R, N, and timeout counters are forced to their load
state conditions.
The charge pump is forced into three-state mode.
The digital lock detect circuitry is reset.
The RFIN input is debiased.
The reference input buffer circuitry is disabled.
The input register remains active and capable of loading
and latching data.
Rev. A | Page 16 of 20
used. If the fastlock mode bit is 0, then Fastlock Mode 1 is
selected; and if the fastlock mode bit is 1, then Fastlock Mode 2
is selected.
Fastlock Mode 1
The charge pump current is switched to the contents of Current
Setting 2.
The device enters fastlock by having a 1 written to the CP gain
bit in the AB counter latch. The device exits fastlock by having a
0 written to the CP gain bit in the AB counter latch.
Fastlock Mode 2
The charge pump current is switched to the contents of Current
Setting 2.
The device enters fastlock by having a 1 written to the CP gain
bit in the AB counter latch. The device exits fastlock under the
control of the timer counter. After the timeout period
determined by the value in TC4:TC1, the CP gain bit in the AB
counter latch is automatically reset to 0 and the device reverts to
normal mode instead of fastlock. See Figure 18 for the timeout
periods.
Timer Counter Control
The user has the option of programming two charge pump
currents. The intent is that Current Setting 1 is used when the
RF output is stable and the system is in a static state. Current
Setting 2 is meant to be used when the system is dynamic and in
a state of change (that is, when a new output frequency is
programmed).
The normal sequence of events is as follows:
The user initially decides what the preferred charge pump
currents are going to be. For example, the choice may be 2.5 mA
as Current Setting 1 and 5 mA as Current Setting 2.
At the same time, it must be decided how long the secondary
current is to stay active before reverting to the primary current.
This is controlled by the timer counter control bits, DB14:DB11
(TC4:TC1) in the function latch. The truth table is given in
Figure 18.
Now, to program a new output frequency, the user simply
programs the AB counter latch with new values for A and B. At
the same time, the CP gain bit can be set to 1, which sets the
charge pump with the value in CPI6:CPI4 for a period of time
determined by TC4:TC1. When this time is up, the charge
pump current reverts to the value set by CPI3:CPI1. At the
same time, the CP gain bit in the AB counter latch is reset to 0
and is now ready for the next time the user wishes to change the
frequency.
Note that there is an enable feature on the timer counter. It is
enabled when Fastlock Mode 2 is chosen by setting the fastlock
mode bit (DB10) in the function latch to 1.

Related parts for ADF4108BCPZ