M30612SAFP MITSUBISHI, M30612SAFP Datasheet

no-image

M30612SAFP

Manufacturer Part Number
M30612SAFP
Description
Single chip 16-bit CMOS microcomputer. RAM 4K bytes
Manufacturer
MITSUBISHI
Datasheet

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
M30612SAFP
Manufacturer:
TI
Quantity:
175
Part Number:
M30612SAFP DH5
Manufacturer:
MITSUBI
Quantity:
20 000
Part Number:
M30612SAFP-MBI
Quantity:
20
Description
Description
Features
Applications
The M16C/61 group of single-chip microcomputers are built using the high-performance silicon gate
CMOS process using a M16C/60 Series CPU core and are packaged in a 100-pin plastic molded QFP.
These single-chip microcomputers operate using sophisticated instructions featuring a high level of in-
struction efficiency. With 1M bytes of address space, they are capable of executing instructions at high
speed. They also feature a built-in multiplier and DMAC, making them ideal for controlling office, communi-
cations, industrial equipment, and other high-speed processing applications.
The M16C/61 group includes a wide range of products with different internal memory types and sizes and
various package types.
• Memory capacity ............................................ ROM (See Figure 1.1.4. ROM Expansion)
• Shortest instruction execution time ................ 100ns (f(X
• Supply voltage ............................................... 4.0 to 5.5V (f(X
• Low power consumption ................................ 18mW ( f(X
• Interrupts ........................................................ 20 internal and 5 external interrupt sources, 4 software
• Multifunction 16-bit timer ................................ 5 output timers + 3 input timers
• Serial I/O (UART or clock synchronous) ........ 3 channels
• DMAC ............................................................ 2 channels (trigger: 16 sources)
• A-D converter ................................................. 10 bits X 8 channels
• D-A converter ................................................. 8 bits X 2 channels
• CRC calculation circuit ................................... 1 circuit
• Watchdog timer .............................................. 1 line
• Programmable I/O ......................................... 87 lines
• Input port ........................................................
• Memory expansion ........................................ Available (to a maximum of 1M bytes)
• Chip select output .......................................... 4 lines
• Clock generating circuit ................................. 2 built-in clock generation circuits
Audio, cameras, office equipment, communications equipment, portable equipment
Central Processing Unit (CPU) ..................... 11
Reset ............................................................. 14
Processor Mode ............................................ 19
Clock Generating Circuit ............................... 30
Protection ...................................................... 39
Interrupts ....................................................... 40
Watchdog Timer ............................................ 59
DMAC ........................................................... 61
------Table of Contents------
RAM 4K to 10K bytes
2.7 to 5.5V (f(X
interrupt sources; 7 levels (including key input interrupt)
(Expandable up to 10 channels)
1 line (P8
(built-in feedback resistor, and external ceramic or quartz oscillator)
5
IN
shared with NMI pin)
IN
Timer ............................................................. 70
Serial I/O ....................................................... 87
A-D Converter ............................................. 114
D-A Converter ............................................. 124
CRC Calculation Circuit .............................. 126
Programmable I/O Ports ............................. 128
Electrical Characteristics ............................. 142
)=10MH
)=7MH
IN
IN
)=10MH
)=7MH
Z
Z
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
, with software one-wait, V
)
_______
Z
Z
with software one-wait)
)
Mitsubishi microcomputers
M16C / 61 Group
CC
= 3V)
1

Related parts for M30612SAFP

M30612SAFP Summary of contents

Page 1

... NMI pin) 5 (built-in feedback resistor, and external ceramic or quartz oscillator) Timer ............................................................. 70 Serial I/O ....................................................... 87 A-D Converter ............................................. 114 D-A Converter ............................................. 124 CRC Calculation Circuit .............................. 126 Programmable I/O Ports ............................. 128 Electrical Characteristics ............................. 142 Mitsubishi microcomputers M16C / 61 Group = 3V ...

Page 2

... P10 / REF AVcc 99 P9 /AD 100 7 TRG Note: P7 Figure 1.1.1. Pin configuration (top view) 2 M16C/61 Group and P7 are N channel open-drain output pin Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER P4 /CS0 /CS1 /CS2 /CS3 /WRL/ ...

Page 3

... AVcc 98 P9 /AD 7 TRG P9 /ANEX1 /ANEX0 100 5 Note: P7 Figure 1.1.2. Pin configuration (top view) M16C/61 Group and P7 are N channel open-drain output pin Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER /CS0 /CS1 ...

Page 4

... R0L R1H R1L R1H R1L Vector table INTB Stack pointer A1 A1 ISP FB FB USP SB FLG Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER Port P4 Port P5 Port P6 System clock generator OUT X -X CIN COUT Memory ROM (Note 1) RAM ...

Page 5

... IN 2.7 to 5.5V(f(X )=7MH IN 18mW (f 7MH with software one-wait 5mA Available (to a maximum of 1M bytes) CMOS silicon gate 100-pin plastic mold QFP Mitsubishi microcomputers M16C / 61 Group ) Z with software one-wait 3V ...

Page 6

... Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER M30612SAFP/GP M30610SAFP/GP M30610ECFS External ROM version Apr. 1999 Remarks 100P6S-A 100P6Q-A 100P6S-A 100P6Q-A 100P6S-A 100P6Q-A 100P6S-A ...

Page 7

... Description Type No – Figure 1.1.5. Type No., memory size, and package Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER Package type Package 100P6S 100P6Q 100D0 ROM No. Omitted for blank one-time PROM version and EPROM version ROM capacity: ...

Page 8

... They also output address (A Input/output This is an 8-bit I/O port equivalent to P0. Output These pins output CS 0 select signals used to specify an access space. A Output order address bits. Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER Function pin. Supply the V pin and the X ...

Page 9

... A-D trigger input pins as selected by software. Input/output This is an 8-bit I/O port equivalent to P6. Pins in this port also function as A-D converter input pins. Furthermore, P10 input pins for the key input interrupt function. Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER Function or a clock selected by software ...

Page 10

... E8000 16 E0000 FFFFF 16 16 Note 1: During memory expansion and microprocessor modes, can not be used. Note 2: When external area do not expand in memory expansion mode. Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER . If the starting addresses of subroutines 16 FFE00 16 Special page vector table FFFDC ...

Page 11

... INTB H b15 b0 USP b15 b0 ISP Address registers b15 b0 SB b15 b0 FLG Frame base registers IPL U Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER b0 Program counter b0 Interrupt table L register b0 User stack pointer b0 Interrupt stack pointer b0 Static base register b0 Flag register ...

Page 12

... Bit 6: Interrupt enable flag (I flag) This flag enables a maskable interrupt. An interrupt is disabled when this flag is “0”, and is enabled when this flag is “1”. This flag is cleared to “0” when the interrupt is acknowledged. 12 Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER ...

Page 13

... Carry flag Debug flag Zero flag Sign flag Register bank select flag Overflow flag Interrupt enable flag Stack pointer select flag Reserved area Processor interrupt priority level Reserved area Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER 13 ...

Page 14

... RD WR CS0 Single chip mode Address Figure 1.6.2. Reset sequence RESET 24cycles FFFFC FFFFD 16 16 FFFFC FFFFE 16 FFFFC Content of reset vector 16 FFFFE 16 Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER 4.0V 0.8V Content of reset vector FFFFE 16 Content of reset vector 16 ...

Page 15

... RD output (“H” level is output) BCLK output HLDA output (The output value depends on the input to the HOLD pin) HOLD input (floating) ALE output (“L” level is output) RDY input (floating) Input port (floating) Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER CNV = BYTE = V SS ...

Page 16

... The content of other registers and RAM is undefined when the microcomputer is reset. The initial values must therefore be set. Note: When the V level is applied to the CNV CC Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER (0396 )··· (0397 )··· ...

Page 17

... DMA1 transfer counter (TCR1) 0039 16 003A 16 003B 16 003C DMA1 control register (DM1CON) 16 003D 16 003E 16 003F 16 Figure 1.7.1. Location of peripheral unit control registers Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER 0040 16 0041 16 0042 16 0043 16 0044 16 0045 16 0046 16 0047 16 0048 16 0049 ...

Page 18

... DMA1 cause select register (DM1SL) 16 03BB 16 03BC 16 CRC data register (CRCD) 03BD 16 03BE CRC input register (CRCIN) 16 03BF 16 Figure 1.7.2. Location of peripheral unit control registers 18 Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER 03C0 16 A-D register 0 (AD0) 03C1 16 03C2 16 A-D register 1 (AD1) 03C3 16 03C4 16 A-D register 2 (AD2) ...

Page 19

... SS ”. 2 pin, changing the processor mode bits selects the mode. Therefore, SS pin ” to the processor mode is selected bits. 2 pin Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER ) applies a (software) reset to the 16 19 ...

Page 20

... Note 2: When this bit is set to “1” in memory expansion mode, M30612M4A/E4 provides the means of using part of internal reserved area as an external area. Set this bit to “0” except M30612M4A/E4. Set this bit to “0” in single chip mode. Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER (Note 2) ...

Page 21

... F0000 16 Set “0” except M30612M4A/E4. E8000 16 Note 2: Set “0” to PM16 (external memory area expansion bit) E0000 16 in single chip mode. Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER Microprocessor mode SFR area Internal RAM area Internally reserved area External area access a device connected externally to the microcomputer ...

Page 22

... Bit 6 of processor mode register 0 BYTE pin Bits 4 and 5 of processor mode register are multiplexed with Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER ) are used to change the bus 16 Switching factor to P4 become part of the ...

Page 23

... HLDA HLDA HLDA HOLD HOLD HOLD ALE ALE ALE RDY RDY RDY Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER Memory expansion mode “00” “11” (Note 1) multiplexed bus for the (separate bus) entire space 16 bits 8 bit “ ...

Page 24

... CS3 CS3 output enable bit CS0W CS0 wait bit CS1W CS1 wait bit CS2W CS2 wait bit CS3W CS3 wait bit Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER to D function Bits the chip select control 7 _______ ...

Page 25

... Read 1 byte of data When BYTE pin = “L” ALE Data (Note Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER ) select the 16 ________ Status of external data bus Status of external data bus A Address Address Data (Note 1) ...

Page 26

... The RDY signal is invalid when setting “1” to all _____ Maintain status when RDY signal received On tsu(RDY - BCLK) Accept timing of RDY signal tsu(RDY - BCLK) Accept timing of RDY signal ________ Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER ________ ), but the RDY pin should be treated as Status ________ ...

Page 27

... Undefined SFR accessed Address output Floating Output data RD, WR, WRL, WRH output BHE output Output "H" Output "L" Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER __________ Status Internal ROM/RAM accessed Maintain status before accessed address of external area Floating Undefined Output " ...

Page 28

... Invalid Invalid 0 Invalid 1 Invalid (Note (Note) Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER ) (Note Bus cycle 2 BCLK cycles 1 BCLK cycle 2 BCLK cycles 1 BCLK cycle 2 BCLK cycles 2 BCLK cycles 3 BCLK cycles 3 BCLK cycles ...

Page 29

... Address bus/ Data bus Chip select Figure 1.11.5. Typical bus timings using software wait Bus cycle Output Address Bus cycle Output Address Bus cycle Address Data output Address Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER Input Address Input Address Address Address Input 29 ...

Page 30

... OUT Vss (Built-in feedback resistor) (Note Externally derived clock C COUT Vcc Vss Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER Sub-clock generating circuit • CPU’s operating clock source • Timer A/B’s count clock source Crystal oscillator CIN COUT ...

Page 31

... CIN X COUT 1/32 CM04 Sub clock OUT R Main clock CM02 CM05 1/2 1/2 a CM06=0 CM17,CM16=01 CM06=0 CM17,CM16= Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER f C32 SIO2 SIO2 SIO2 CM07 Divider ...

Page 32

... COUT 1SIO2 8SIO2 ) to “1” and then executing a WAIT instruction. 16 Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER ). Stopping the 16 ), the sub-clock can However, be sure the memory expan changes to “1” when shifting from high- ,f ...

Page 33

... Division by 2 mode Division by 4 mode CM17 Division by 16 mode ) to “1” before writing to this register. 16 turns “H”, and the built-in feedback resistor is cut off. X OUT Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER Function 7 output output output ...

Page 34

... Retains status before stop mode “H” “H” “H” Retains status before stop mode Retains status before stop mode Valid only in single-chip mode Valid only in single-chip mode Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER ) enable stops all oscillation and the microcom- 16 ...

Page 35

... Retains status before wait mode Valid only in single-chip mode selected Valid only in single-chip mode 32 Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER Single-chip mode Retains status before wait mode Does not stop Does not stop when the WAIT peripheral function clock stop bit is “ ...

Page 36

... Invalid 0 0 Invalid Invalid 0 1 Invalid 1 1 Mitsubishi microcomputers M16C / 61 Group or vice versa, the clock to which CIN Operating mode of BCLK Division by 2 mode Division by 4 mode Division by 8 mode Division by 16 mode No-division mode Low-speed mode Low power dissipation mode ...

Page 37

... All oscillators stop. The CPU and all built-in peripheral functions stop. This mode, among the three modes listed here, is the most effective in decreasing power consumption. Figure 1.12.5 is the state transition diagram of the above modes. Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER ...

Page 38

... CM06 = “0” (Note 3) (divided-by-16 mode) CM04 = “1” )/4 BCLK : f(X )/ CM07 = “0” CM06 = “0” CM17 = “1” CM16 = “1” Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER CPU operation stopped WAIT instruction Wait mode Interrupt CPU operation stopped WAIT ...

Page 39

... PRC2 ) register (address 03F3 ) (Note 16 to “0” . Other bits do not automatically return to “0” and they must therefore be reset by the program. Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER ), system clock control reg and port P9 direction register 16 ) and processor mode register 0 and ...

Page 40

... Peripheral I/O (Note) An interrupt which can be enabled (disabled) by the interrupt enable flag (I flag) or whose interrupt priority can be changed by priority level. (I flag) or whose interrupt priority cannot be changed by priority level. Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER Undefined instruction (UND instruction) Overflow (INTO instruction) ...

Page 41

... When returning from the interrupt routine, the U flag is returned to the state it was before the acceptance of interrupt re- quest. So far as software numbers 32 through 63 are concerned, the stack pointer does not make a shift. Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER 41 ...

Page 42

... Timer B0 interrupt through timer B2 interrupt These are interrupts that timer B generates. ________ • INT0 interrupt through INT2 interrupt ______ An INT interrupt occurs if either a rising edge or a falling edge is input to the INT pin. 42 ____________ _______ ___ ________ Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER ______ ...

Page 43

... There is an address-matching interrupt enable bit FFFEF Do not use FFFF3 FFFF7 Do not use FFFFB External interrupt by input to NMI pin FFFFF 16 16 Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER LSB High address Remarks , program execution starts from 16 _______ 43 ...

Page 44

... Timer B1 +112 to +115 (Note) Timer B2 +116 to +119 (Note) INT0 +120 to +123 (Note) INT1 +124 to +127 (Note) INT2 +128 to +131 (Note) to Software interrupt +252 to +255 (Note) Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER Remarks Cannot be masked I flag Cannot be masked I flag ...

Page 45

... The interrupt request bit and the interrupt priority level selection bit are located in the interrupt control register of each interrupt. Also, the interrupt enable flag (I flag) and the IPL are located in the flag register (FLG). Figure 1.13.3 shows the memory map of the interrupt control registers. Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER 45 ...

Page 46

... POL Polarity select bit 0 : Selects falling edge 1 : Selects rising edge Reserved bit Always set to “0” interrupt request for that register. For details, see the precautions for interrupts. Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER When reset XXXXX000 16 2 XXXXX000 ...

Page 47

... High Mitsubishi microcomputers M16C / 61 Group Enabled interrupt priority levels Interrupt levels 1 and above are enabled Interrupt levels 2 and above are enabled Interrupt levels 3 and above are enabled Interrupt levels 4 and above are enabled Interrupt levels 5 and above are enabled ...

Page 48

... Instructions : AND, OR, BCLR, BSET 48 ; Disable interrupts. ; Four NOP instructions are required when using HOLD function. ; Enable interrupts. ; Disable interrupts. ; Dummy read. ; Enable interrupts. ; Push Flag register onto stack ; Disable interrupts. ; Enable interrupts. Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER ...

Page 49

... Figure 1.13.4 shows the interrupt response time. Interrupt request generated Instruction (a) Figure 1.13.4. Interrupt response time Interrupt request acknowledged Interrupt sequence (b) Interrupt response time Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER Time Instruction in interrupt routine 49 ...

Page 50

... Odd 20 cycles (Note 1) ________ Indeterminate SP-2 SP-2 Indeterminate contents Indeterminate Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER 8-Bit bus, without wait 20 cycles (Note 1) 20 cycles (Note 1) 20 cycles (Note 1) 20 cycles (Note SP-4 vec vec+2 ...

Page 51

... Stack pointer m value before interrupt occurs Stack status after interrupt request is acknowledged Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER Stack area LSB [SP] New stack Program counter ( pointer value Program counter (PC ...

Page 52

... H H Finished saving registers in two operations. Stack area Sequence in which order registers are saved ) ( (4) Saved simultaneously, all 8 bits Flag register (FLG ) L (1) Program (2) counter ( Finished saving registers in four operations. Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER ...

Page 53

... Figure 1.13.8. Hardware interrupts priorities Interrupt resolution circuit When two or more interrupts are generated simultaneously, this circuit selects the interrupt with the highest priority level. Figure 1.13.9 shows the circuit that judges the interrupt priority level. Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER 53 ...

Page 54

... Processor interrupt priority level (IPL) Interrupt enable flag (I flag) Address match Watchdog timer DBC NMI Reset Figure 1.13.9. Maskable interrupts priorities (peripheral I/O interrupts) 54 SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER Level 0 (initial value) High Priority of peripheral I/O interrupts (if priority levels are same) Low Mitsubishi microcomputers M16C / 61 Group Interrupt request accepted ...

Page 55

... Key input interrupt control register Port P10 direction 7 register direction register 7 direction 6 Interrupt control circuit direction 5 direction 4 Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER ______ register (bit 5 at address 5 (address 004D ) 16 Key input interrupt request ...

Page 56

... RMAD0 RMAD1 Function Address setting register for address match interrupt Nothing is assigned attempt to write to these bits, write “0”. The value, if read, turns out to be indeterminated. Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER When reset XXXXXX00 2 Function Interrupt disabled ...

Page 57

... Reading the contents of the P8 register 5 _______ _______ _______ ________ to INT pins is changed, the interrupt request bit is sometimes set to "1" Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER will then be set to “0” Accepting an interrupt 16 _______ pin via a resistor CC ...

Page 58

... Set the interrupt enable flag to “1” (Enable interrupt) ______ ; Disable interrupts. ; Four NOP instructions are required when using HOLD function. ; Enable interrupts. ; Disable interrupts. ; Dummy read. ; Enable interrupts. ; Push Flag register onto stack ; Disable interrupts. ; Enable interrupts. Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER ...

Page 59

... Prescaler “CM07 = 0” “WDC7 = 0” 1/16 “CM07 = 0” “WDC7 = 1” 1/128 “CM07 = 1” 1/2 Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER is selected for the IN ) selects the prescaler division ratio (by 16 BCLK ) and when 16 Watchdog timer Watchdog timer interrupt request Set to “ ...

Page 60

... Symbol Address WDTS 000E 16 Function The watchdog timer is initialized and starts counting after a write instruction to this register. The watchdog timer value is always initialized to “7FFF regardless of whatever value is written. Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER When reset 000XXXXX 2 Function R W Must always be set to “0” ...

Page 61

... DMA1 destination pointer DAR1 (20) DMA1 forward address pointer (20) (Note) , 0038 ) 16 16 DMA latch high-order bits Data bus low-order bits Data bus high-order bits Note: Pointer is incremented by a DMA request. Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER (addresses 0022 to 0020 ) 16 16 (addresses 0026 to 0024 ...

Page 62

... DMA enable bit is “0”. Can be read at any time. However, when the DMA enable bit is “1”, reading the register set up as the forward register is the same as reading the value of the forward address pointer. Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER to 003F ...

Page 63

... Destination address DAD direction select bit (Note 3) Nothing is assigned attempt to write to these bits, write “0”. The value, if read, turns out to be “0”. cannot be set to “1” simultaneously. Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER When reset 00 16 ...

Page 64

... In an attempt to write to these bits, write “0”. The value, if read, turns out to be “0”. b0 Symbol TCR0 TCR1 Function • Transfer counter Set a value one less than the transfer count Mitsubishi microcomputers M16C / 61 Group Address When reset 0022 to 0020 Indeterminate 16 ...

Page 65

... For example (2) in Figure 36, if data is being transferred in 16-bit units on an 8-bit bus, two bus cycles are required for both the source read cycle and the destination write cycle. Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER ...

Page 66

... Dummy Source Destination cycle Dummy Source Destination cycle Source Source + 1 Destination Source Source + 1 Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER CPU use CPU use CPU use CPU use CPU use CPU use Dummy CPU use cycle Dummy Destination CPU use ...

Page 67

... Even 1 Odd 1 Even — Odd — Even 1 Odd 2 Even — Odd — Separate bus Separate bus No wait Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER Memory expansion mode Microprocessor mode cycles cycles cycles — — ...

Page 68

... INTi pin, for example). With an external factor selected, the DMA request bit is timed to turn to 0 immediately before data transfer starts similarly to the state in which an internal factor is selected. 68 Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER ...

Page 69

... DMA transmission request signals due to external factors concurrently occur. BCLK DMA0 DMA1 CPU INT0 DMA0 request bit INT1 DMA1 request bit Figure 1.15.5. An example of DMA transfer effected by external factors Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER Obtainm ent of the bus right 69 ...

Page 70

... Event counter mode • Timer mode • Pulse width measuring mode filter • Event counter mode • Timer mode • Pulse width measuring mode filter • Event counter mode Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER Clock prescaler f 1/32 C32 Reset Timer A0 interrupt ...

Page 71

... Operation mode select bit TMOD1 MR0 Function varies with each operation mode MR1 MR2 MR3 TCK0 Count source select bit (Function varies with each operation mode) TCK1 Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER ”. 16 Low-order High-order 8 bits 8 bits Reload register (16) Counter (16) ...

Page 72

... Timer A4 up/down flag TA2P Timer A2 two-phase pulse signal processing select bit TA3P Timer A3 two-phase pulse signal processing select bit TA4P Timer A4 two-phase pulse signal processing select bit Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER Address When reset 0387 ,0386 Indeterminate 16 16 ...

Page 73

... Bit symbol Bit name Nothing is assigned attempt to write to these bits, write “0”. The value, if read, turns out to be indeterminate. CPSR Clock prescaler reset flag Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER Function 1 : Timer start When read, the value is “0” ...

Page 74

... Note 1: The settings of the corresponding port register and port direction register are invalid. Note 2: The bit can be “0” or “1”. Note 3: Set the corresponding port direction register to “0”. Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER pin’s input signal IN pin’ ...

Page 75

... Note 3: Valid only when counting an external signal. Note 4: When an “L” signal is input to the TAi OUT the upcount is activated. Set the corresponding port direction register to “0”. Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER n : Set value pin’s polarity is reversed ...

Page 76

... TAi IN counts down rising and falling edges on the TAi TAi OUT Count up all edges TAi IN (i=3,4) Count up all edges Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER or TAi pin IN OUT n : Set value pin is “H” Down ...

Page 77

... For timer A2 and A4 mode registers, this bit can be “0” or “1”. Note 2: When performing two-phase pulse signal processing, make sure the two-phase pulse signal processing operation select bit (address 0384 sure to set the event/trigger select bit (addresses 0382 Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER When reset ...

Page 78

... If timer overflow is selected, this bit can be “1” or “0” Note 3: Set the corresponding port direction register to “0”. Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER ...

Page 79

... If timer overflow is selected, this bit can be “1” or “ Note 2: Set the corresponding port direction register to “0”. Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER When reset ...

Page 80

... – Cleared to “0” when interrupt request is accepted, or cleaerd by software , f ) C32 Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER 8 ...

Page 81

... Function varies with each operation mode MR1 MR2 MR3 TCK0 Count source select bit (Function varies with each operation mode) TCK1 Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER Data bus high-order bits Data bus low-order bits High-order 8 bits Low-order 8 bits Reload register (16) ...

Page 82

... Bit symbol Bit name Nothing is assigned attempt to write to these bits, write “0”. The value, if read, turns out to be indeterminate. CPSR Clock prescaler reset flag Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER Address When reset 0391 , 0390 Indeterminate 16 ...

Page 83

... In an attempt to write to this bit, write “0” . The value, if read in timer mode, turns out to be indeterminate Count source select bit TCK0 TCK1 Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER When reset 00XX0000 2 Function R W (Note 1) ...

Page 84

... IN If timer's overflow is selected, this bit can be “0” or “1”. Note 2: Timer B0. Note 3: Timer B1, timer B2. Note 4: Set the corresponding port direction register to “0”. Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER When reset 00XX0000 2 ...

Page 85

... Note Timer has overflowed b7 b6 Count source select bit C32 timer Bi mode register. This flag cannot be set to “1” by software. Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER Function (Note 2) (Note 3) 85 ...

Page 86

... Cleared to “0” when interrupt request is accepted, or cleared by software. Transfer Transfer Transfer (measured value) (indeterminate (measured value) value) (Note 1) (Note 1) Cleared to “0” when interrupt request is accepted, or cleared by software. Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER Transfer (measured value) (Note 1) (Note 2) Transfer (measured value) (Note 1) (Note 1) (Note 2) ...

Page 87

... UARTi is used as a clock synchronous serial I UART0 Possible (Note 1) Possible (Note 1) Possible (Note 1) Impossible Possible Impossible Possible (Note 3) Impossible CMOS output Impossible Impossible Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER UART1 UART2 Possible (Note 1) Possible Possible (Note 1) Possible Possible (Note 1) Possible Possible (Note 1) Impossible ...

Page 88

... Vcc CTS/RTS disabled CTS Values set to UART0 bit rate generator (BRG0 Values set to UART1 bit rate generator (BRG1 Values set to UART2 bit rate generator (BRG2) Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER Receive Reception clock Transmit/ control circuit receive ...

Page 89

... Clock synchronous UART (9 bits) type PAR UART enabled PAR Clock UART (7 bits) disabled synchronous type UART (7 bits) UART (8 bits) “0” Clock synchronous type Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER UARTi receive register UARTi receive ...

Page 90

... PAR UART UART(7 bits) synchronous disabled (7 bits) type UART (8 bits) “0” Clock synchronous type Error signal output disable Error signal output enable Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER UART2 receive register UART2 receive ...

Page 91

... U1BRG 03A9 Indeterminate 16 U2BRG 0379 Indeterminate 16 Function Assuming that set value = n, BRGi divides the count source Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER R W Function R W (During UART mode) Receive data overrun error 1 : Overrun error found framing error ...

Page 92

... Odd/even parity select bit Invalid Parity enable bit Invalid TxD, RxD I/O polarity reverse reverse bit 1 : Reverse Usually set to “0” Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER Function R W (During UART mode Transfer data 7 bits long ...

Page 93

... Transmit data is output at rising edge of transfer clock and receive data is input at falling edge UFORM Transfer format select bit 0 : LSB first 1 : MSB first (Note 3) Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER Function R (During UART mode selected ...

Page 94

... Continuous receive mode enabled Data logic select bit reverse 1 : Reverse Must be fixed to “0” enable bit Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER Function R W (During UART mode Transmission disabled 1 : Transmission enabled 0 : Data present in ...

Page 95

... Transfer clock output from multiple pins function selected Separate CTS/RTS bit 0 : CTS/RTS shared pin 1 : CTS/RTS separated • UART1 internal/external clock select bit (bit 3 at address 03A8 Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER Function R W (During UART mode Transmit buffer empty ( ...

Page 96

... UARTi receive buffer register is completed This error occurs when the next data is ready before contents of UARTi receive buffer register are read out to FF that is set to the UART bit rate generator Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER Specification , 03A8 16 16 ...

Page 97

... Whether to reverse data in writing to the transmission buffer register or reading the reception buffer register can be selected I/O polarity reverse (UART2 This function is reversing T D port output and R X level is reversed. Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER Specification D port input. All I/O data X _______ _______ 97 ...

Page 98

... Internal/external clock select bit STPS PRY Invalid in clock synchronous serial I/O mode PRYE IOPOL TxD, RxD I/O polarity reverse bit (Note) Note: Usually set to “0”. Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER When reset 00 16 Function Clock synchronous serial ...

Page 99

... CTS/RTS disable bit (bit 4 at address 03A4 CTS/RTS function select bit (bit 2 at address 03A4 CTS/RTS disable bit (bit 4 at address 03A4 _______ _______ Mitsubishi microcomputers M16C / 61 Group _______ , 16 , 03A8 , 0378 ) = “0” ...

Page 100

... Meet the following conditions are met when the CLK input before data reception = “H” • Transmit enable bit • Receive enable bit • Dummy data write to UARTi transmit buffer register Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER Stopped pulsing because transfer enable bit = “0” D ...

Page 101

... Note: This applies when the CLK polarity select bit = “0”. Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER , 03AC 16 Note 1: The CLK pin level when not 7 transferring data is “H”. 7 Note 2: The CLK pin level when not transferring data is “ ...

Page 102

... CLK ) = “1”, and writing to transmit buffer register Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER ). (See Figure 1.17.13 CLK , bit 5 at address 037D ...

Page 103

... This flag is set (= 1) when any of the overrun, framing, and parity errors is encountered to FF that is set to the UARTi bit rate generator Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER , 03A8 , 0378 16 16 ...

Page 104

... This function is reversing logic value of transferring data. Start bit, parity bit and stop bit are not reversed I/O polarity switch X X This function is reversing T D port output and R X level is reversed. Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER D port input. All I/O data X ...

Page 105

... PRY Odd / even parity select bit PRYE Parity enable bit IOPOL TxD, RxD I/O polarity reverse bit (Note) Note: Usually set to “0”. Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER When reset Function Transfer data 7 bits long ...

Page 106

... CTS/RTS disable bit (bit 4 at address 03A4 CTS/RTS function select bit (bit 2 at address 03A4 CTS/RTS disable bit (bit 4 at address 03A4 Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER Di pin outputs a “H”. (If the N-channel X , ...

Page 107

... frequency of BRGi count source ( frequency of BRGi count source (external clock) EXT n : value set to BRGi Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER Stopped pulsing because transmit enable bit = “0” ...

Page 108

... Cleared to “0” when interrupt request is accepted, or cleared by software frequency of BRG2 count source ( value set to BRG2 Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER ...

Page 109

... RTS0 ( CTS0 ( _______ _______ Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER Stop bit _______ ) to "1" inputs/outputs the CTS signal and 16 _______ _______ _______ _______ _______ ). OUT CTS RTS ...

Page 110

... pin output and R D pin input. The level of any data to be input or output pin and the input level of the Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER Start bit P : Even parity ...

Page 111

... On the transmission side, a parity error is detected by the level of input to the R D pin when a transmission interrupt occurs that is set to the UARTi bit rate generator pin. 2 Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER = “101 16 = “0” “1” and “1” respectively “0”). 16 = “0”). ...

Page 112

... Read to receive buffer Cleared to “0” when interrupt request is accepted, or cleared by software frequency of BRG2 count source ( value set to BRG2 Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER Note ...

Page 113

... you choose the inverse format Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER ) assigned “1”, you can output an “L” Start bit P : Even Parity SP : Stop bit data is inverted ...

Page 114

... Clock asynchronous serial I/O (UART) mode Figure 1.17.25 shows the example of connecting the SIM interface. Connect T up. Figure 1.17.25. Connecting the SIM interface 114 Microcomputer TxD 2 RxD 2 Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER D and R D and apply pull SIM card ...

Page 115

... TRG 7 8-bit resolution: 49 cycles, 10-bit resolution 8-bit resolution: 28 cycles, 10-bit resolution frequency to 250kHz min. AD frequency to 1MHz min. AD Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER ) when the A-D REF , reducing the power REF to connect V 16 /divide-by =f(X ) ...

Page 116

... A-D control register 0 (address 03D6 16 Decoder CH2,CH1,CH0=000 CH2,CH1,CH0=001 CH2,CH1,CH0=010 CH2,CH1,CH0=011 OPA1,OPA0=0,0 CH2,CH1,CH0=100 CH2,CH1,CH0=101 CH2,CH1,CH0=110 CH2,CH1,CH0=111 OPA1,OPA0=1,1 OPA0=1 OPA1,OPA0=0,1 OPA1=1 Mitsubishi microcomputers M16C / 61 Group AD A-D conversion rate selection ) ) V ref Comparator V IN OPA1, OPA0 Normal operation ANEX0 ANEX1 External op-amp mode ...

Page 117

... External op-amp b7 b6 OPA0 ANEX0 and ANEX1 are not used connection mode bit ANEX0 input is A-D converted ANEX1 input is A-D converted OPA1 External op-amp connection mode indeterminate. Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER 2 Function selected 0 is selected ...

Page 118

... Two high-order bits of A-D conversion result • During 8-bit mode When read, the content is indeterminate Nothing is assigned attempt to write to these bits, write “0”. The value, if read, turns out to be “0”. Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER 2 Function R W ...

Page 119

... ANEX0 and ANEX1 are not used connection mode bit ANEX0 input is A-D converted ANEX1 input is A-D converted OPA1 External op-amp connection mode Note: If the A-D control register is rewritten during A-D conversion, the conversion result is indeterminate. Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER 2 Function selected ...

Page 120

... ANEX0 and ANEX1 are not used connection mode bit ANEX0 input is A-D converted ANEX1 input is A-D converted OPA1 External op-amp connection mode Note: If the A-D control register is rewritten during A-D conversion, the conversion result is indeterminate. Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER 2 Function selected ...

Page 121

... External op-amp OPA0 ANEX0 and ANEX1 are not used connection mode ANEX0 input is A-D converted bit (Note ANEX1 input is A-D converted OPA1 External op-amp connection mode is indeterminate. Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER pins ...

Page 122

... External op-amp OPA0 ANEX0 and ANEX1 are not used connection mode ANEX0 input is A-D converted bit (Note ANEX1 input is A-D converted OPA1 External op-amp connection mode is indeterminate. Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER pins ...

Page 123

... External op-amp connection mode Note 1: If the A-D control register is rewritten during A-D conversion, the conversion result is indeterminate. Note 2: Neither ‘01’ nor ‘10’ can be selected with the external op-amp connection mode bit. Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER AN ...

Page 124

... AN 16 Resistor ladder Successive conversion register ANEX0 ANEX1 Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER ) to “1”. When 16 cycle Comparator is 7 ...

Page 125

... Figure 1.19.1. Block diagram of D-A converter X n/ 256 ( 255) REF V : reference voltage REF Performance R-2R method 8 bits 2 channels D-A register0 (8) (Address 03D8 D-A0 output enable bit D-A register1 (8) (Address 03DA D-A1 output enable bit Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER ) 125 ...

Page 126

... DA1E D-A1 output enable bit 1 : Output enabled Symbol Address DAi (i = 0,1) 03D8 03DA Function Output value of D-A conversion Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER When reset 00 16 Function R W When reset Indeterminate ...

Page 127

... Symbol Address b0 CRCD 03BD 16 Function CRC calculation result output register Symbo Address CRCIN Function Data input register Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER generate CRC code. Eight high-order bits (Addresses 03BD , 03BC ) When reset , 03BC ...

Page 128

... LSB CRC input register After CRC calculation is complete b0 CRC data register 0A41 16 Stores CRC code Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER [03BD , 03BC ] 16 16 CRCIN [03BE ] 16 CRCD [03BD , 03BC ] ...

Page 129

... However, in memory expansion mode and microprocessor mode, the pull-up control register invalid. SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER ). Each port can be set independently for Mitsubishi microcomputers M16C / 61 Group is 5 129 ...

Page 130

... Direction register “1” Output Port latch Pull-up selection Direction register “1” Output Port latch Input to respective peripheral functions symbolizes a parasitic diode. Do not apply a voltage higher than V Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER (Note) (Note) (Note) to each port. CC (Note) ...

Page 131

... Pull-up selection Direction register Port latch Direction register “1” output Port latch Direction register Port latch NMI interrupt input symbolizes a parasitic diode. to each port. CC symbolizes a parasitic diode. Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER (Note 1) (Note 2) (Note 2) (Note 1) 131 ...

Page 132

... Pull-up selection Direction register Port latch Analog input Pull-up selection D-A output enabled Direction register Port latch Analog input Note : symbolizes a parasitic diode. Do not apply a voltage higher than V Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER (Note) (Note) D-A output enabled to each port. CC ...

Page 133

... Pull-up selection Port latch Pull-up selection “1” output Port latch Note : symbolizes a parasitic diode. Do not apply a voltage higher than V side is added to the mask ROM version. CC Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER (Note (Note) to each port. CC (Note 2) (Note 1) ...

Page 134

... Port P8 direction register Input mode Port P8 direction register 6 (Functions as an input port Output mode Port P8 direction register 7 (Functions as an output port) Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER Address When reset , 03E6 , 03E7 , 03EA 03EF ...

Page 135

... Port P8 register “L” level data Port P8 register “H” level data Port P8 register 5 Port P8 register 6 Port P8 register 7 Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER Address When reset , 03E4 , 03E5 , 03E8 Indeterminate 03ED , 03F1 , 03F4 Indeterminate 16 16 ...

Page 136

... Not pulled high (Except Pulled high pull- pull- P10 to P10 pull- P10 to P10 pull- Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER When reset 00 16 Function R W When reset 00 16 Function R W When reset 00 16 Function R W ...

Page 137

... Open Open V CC 0.47µs CNV SS(microprocessor mode) CNV SS(memory expansion mode memory expansion mode or in microprocessor mode Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER via a resistor via a resistor (Input mode) · · · ...

Page 138

... Bi register after setting a value in the timer Bi register with a count halted but before the counter starts counting gets a proper value. 138 pin is outputting an “H” level in this instance, the output level goes to “L”, and OUT Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER ”. Reading the 16 ” ...

Page 139

... NMI interrupt is prohibited. ____________ 16 by software sets enabled highest priority interrupt source request bit to “0” software. 16 Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER will then be set to “0” Accepting an 16 _______ ...

Page 140

... Disable interrupts. ; Four NOP instructions are required when using HOLD function. ; Enable interrupts. ; Disable interrupts. ; Dummy read. ; Enable interrupts. ; Push Flag register onto stack ; Disable interrupts. ; Enable interrupts. Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER pin via a CC _______ ...

Page 141

... Cover the transparent glass window with a shield or others during the read mode because exposing to sun light or fluorescent lamp can cause erasing the information. A shield to cover the transparent window is available from Mitsubishi Electric Corp. Be careful that the shield does not touch the EPROM lead pins. ...

Page 142

... Mask ROM confirmation form (2) Mark specification sheet (3) ROM data : EPROMs or floppy disks *: In the case of EPROMs, there sets of EPROMs are required per pattern the case of floppy disks, 3.5-inch double-sided high-density disk (IBM format) is required per pattern. 142 Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER ...

Page 143

... P10 to P10 Ta= –0 ( Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER Rated value Unit V –0.3 to 6.5 (Note 3) –0.3 to 6.5 (Note 3) V –0.3 to Vcc+0.3 V –0.3 to 6.5 (Note 1, Note –0.3 to Vcc+0.3 –0.3 to 6.5 (Note 3) V ...

Page 144

... P9, and P10 must be 80mA max. The total (peak) for ports P3, P4, P5, P6, P7, and and Main clock input oscillation frequency (No wait) 10.0 2. 7.0 0.0 4.2 5.5 [V] Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER = 2. – Standard Min Typ. Max. 2.7 5.0 5.5 Vcc P10 , ...

Page 145

... CIN Square wave are open f(X and other CIN When a WAIT instruction is pins are V SS executed(Note) Ta=25 C when clock is stopped Ta=85 C when clock is stopped 32. Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER 5V f(X SS Standard Typ. Max. Min 3.0 4.7 3.0 3.0 3 ...

Page 146

... CC ANEX0, ANEX1 input External op-amp connection mode REF REF 10MH unless otherwise specified Measuring condition Note ( ) Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER 5V REF SS Standard Min. Typ. Max. 10 ±3 input 7 ±3 ±7 ± ...

Page 147

... ac3(RD – DB) = f(BCLK 5V Parameter Parameter 9 – 45 [ns] 9 – 45 [ns] 9 – 45 [ns] Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER unless otherwise specified) Standard Unit Min. Max. ns 100 ...

Page 148

... OUT t TAi input hold time h(T UP) IN- OUT 148 SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER Parameter Parameter Parameter Parameter Parameter Mitsubishi microcomputers M16C / 61 Group unless otherwise specified) Standard Unit Min. Max. ns 100 Standard Unit Min. Max. ...

Page 149

... INTi input HIGH pulse width t w(INL) INTi input LOW pulse width = 5V Parameter Parameter Parameter Parameter Parameter _______ Parameter Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER unless otherwise specified) Standard Unit Min. Max. 100 ns ns ...

Page 150

... Measuring condition Parameter Figure 1.24 – 40 [ns 0. 30pF hold time Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER CM15 = “1” unless Standard Unit Min. Max ...

Page 151

... Measuring condition Parameter Figure 1.24.1 9 – 40 [ns 0. 30pF hold time Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER CM15 = “1” unless Standard Unit Min. Max ...

Page 152

... Measuring condition Figure 1.24.1 9 [ns] 9 [ns] 9 [ns] 9 [ns – 40 [ns] 9 [ns] 9 – 25 [ns] Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER CM15 = “1” unless Standard Unit Min. Max (Note) ns (Note ...

Page 153

... Timing (Vcc = 5V) Figure 1.24.1. Port P0 to P10 measurement circuit SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER 30pF P10 Mitsubishi microcomputers M16C / 61 Group 153 ...

Page 154

... INTi input Figure 1.24.2. V =5V timing diagram (1) CC 154 SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER t c(TA) t w(TAH) t w(TAL) t c(UP) t w(UPH) t w(UPL) t h(T –UP c(TB) t w(TBH) t w(TBL) t c(AD) t w(ADL) t c(CK) t w(CKH) t w(CKL su(D–C) d(C–Q) t w(INL) t w(INH) Mitsubishi microcomputers M16C / 61 Group su(UP– h(C–Q) t h(C–D) ...

Page 155

... V =5V CC • Input timing voltage : Determined with V • Output timing voltage : Determined with V Figure 1.24.3. V =5V timing diagram (2) CC tsu(RDY–BCLK) t h(BCLK–HOLD) t d(BCLK–HLDA) Hi– =1.0V Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER th(BCLK–RDY) =4.0V IH =2.5V, V =2.5V OH 155 ...

Page 156

... Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER ...

Page 157

... V IL =0.8V Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER 4ns.min t h(RD–CS) 0ns.min 4ns.min t h(BCLK–ALE) –4ns.min 0ns.min t h(RD–DB) 0ns.min 4ns.min t h(WR–CS) 0ns ...

Page 158

... Data output Address t d(DB–WR) (tcyc*3/2–40)ns.min t t h(BCLK–ALE) d(AD–WR) –4ns.min 0ns.min t d(BCLK–WR) 25ns.max =5V CC Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER h(BCLK–CS) h(RD–CS) 4ns.min (tcyc/2)ns.min Data input Address t h(RD–DB) 0ns.min t SU(DB– ...

Page 159

... Oscillation capacity High and other (Note) pins are V SS f(X When a WAIT instruction is executed. Oscillation capacity Low (Note) Ta=25 C when clock is stopped Ta=85 C when clock is stopped 32. Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER 3V f(X SS Standard Min Typ. Max. 2.5 2.5 2 ...

Page 160

... IN Z Measuring condition REF REF REF 7MH unless otherwise specified Measuring condition (Note) Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER 3V REF SS Standard Min. Typ. Max 10 ±2 = 3V, = f(X )/ ...

Page 161

... ac3(RD – DB) = f(BCLK 3V Parameter Parameter 9 – 90 [ns] 9 – 90 [ns] 9 – 90 [ns] Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER unless otherwise specified) Standard Unit Min. Max. ns 143 ...

Page 162

... IN t TAi input hold time h(T UP) OUT IN- 162 SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER Parameter Parameter Parameter Parameter Parameter Mitsubishi microcomputers M16C / 61 Group unless otherwise specified) Standard Unit Min. Max. 150 Standard Unit Min. Max. 600 ...

Page 163

... INTi input HIGH pulse width w(INH) t INTi input LOW pulse width w(INL Parameter Parameter Parameter Parameter Parameter _______ Parameter Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER unless otherwise specified) Standard Unit Min. Max. 150 ...

Page 164

... Measuring condition Figure 1.24 – 80 [ns 0. 30pF hold time Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER CM15 = “1” unless Standard Unit Min. Max ...

Page 165

... Measuring condition Figure 1.24 – 80 [ns 0. 30pF hold time Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER CM15 = “1” unless Standard Unit Min. Max ...

Page 166

... Measuring condition Figure 1.24 [ns [ns [ns [ns – 80 [ns [ns – 60 [ns] Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER CM15 = “1” unless Standard Unit Min. Max (Note) ns (Note (Note) ...

Page 167

... INTi input Figure 1.24.7. V =3V timing diagram (1) CC SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER t c(TA) t w(TAH) t w(TAL) t c(UP) t w(UPH) t w(UPL) t h(T –UP c(TB) t w(TBH) t w(TBL) t c(AD) t w(ADL) t c(CK) t w(CKH) t w(CKL d(C–Q) su(D–C) t w(INL) t w(INH) Mitsubishi microcomputers M16C / 61 Group su(UP– h(C–Q) t h(C–D) 167 ...

Page 168

... V =3V CC • Input timing voltage : Determined with V • Output timing voltage : Determined with V Figure 1.24.8. V =3V timing diagram (2) CC 168 tsu(RDY–BCLK) t h(BCLK–HOLD) t d(BCLK–HLDA) Hi– =0.6V Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER th(BCLK–RDY) =2.4V IH =1.5V, V =1.5V OH ...

Page 169

... SU(DB–RD) 80ns.min t h(BCLK–CS) 4ns.min t h(WR–CS) 0ns.min t h(BCLK–AD) 4ns.min t h(WR–AD) 0ns.min –4ns.min t h(BCLK–WR) 0ns.min t h(BCLK–DB) 4ns.min t h(WR–DB) t 0ns.min d(DB–WR) (tcyc/2–80)ns.min Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER 169 ...

Page 170

... Hi–Z t SU(DB–RD) 80ns.min t h(WR–AD) 0ns.min t d(BCLK–WR) 60ns.max t d(BCLK–DB) 80ns.max t d(DB–WR) (tcyc–80)ns.min =3V =0.48V Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER h(BCLK–CS) 4ns.min t h(RD–CS) 0ns.min t h(BCLK–AD) 4ns.min t h(BCLK–ALE) –4ns.min t h(BCLK–RD) 0ns.min t h(RD– ...

Page 171

... Address Data output t d(DB–WR) (tcyc*3/2–80)ns.min t t h(BCLK–ALE) d(AD–WR) 0ns.min –4ns.min t d(BCLK–WR) 60ns.max =3V CC Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER h(BCLK–CS) t 4ns.min h(RD–CS) (tcyc/2)ns.min Data input Address t h(RD–DB) 0ns.min t SU(DB– ...

Page 172

... Mitsubishi will create the mask using the data on the EPROMs supplied, providing the data is the same on at least two of those sets. Mitsubishi will, therefore, only accept liability if there is any discrepancy between the data on the EPROM sets and the ROM data written to the product. ...

Page 173

... In the case of floppy disks Mitsubishi processes the mask files generated by the mask file generation utilities out of those held on the floppy disks you give in to us, and forms them into masks. Hence, we assume liability provided that there is any discrepancy between the contents of these mask files and the ROM data to be burned into products we produce ...

Page 174

... GZZ SH11 53B <71A1> MITSUBISHI ELECTRIC SINGLE-CHIP 16-BIT MICROCOMPUTER M30610M8A-XXXFP/GP MASK ROM CONFIRMATION FORM (2) Which kind of X CIN Ceramic resonator External clock input What frequency do you use? f CIN (3) Which operation mode do you use? Single-chip mode Microprocessor mode (4) Which operating ambient temperature do you use? – ...

Page 175

... Mitsubishi will create the mask using the data on the EPROMs supplied, providing the data is the same on at least two of those sets. Mitsubishi will, therefore, only accept liability if there is any discrepancy between the data on the EPROM sets and the ROM data written to the product. ...

Page 176

... In the case of floppy disks Mitsubishi processes the mask files generated by the mask file generation utilities out of those held on the floppy disks you give in to us, and forms them into masks. Hence, we assume liability provided that there is any discrepancy between the contents of these mask files and the ROM data to be burned into products we produce ...

Page 177

... GZZ SH11 52B <71A1> MITSUBISHI ELECTRIC SINGLE-CHIP 16-BIT MICROCOMPUTER M30610MAA-XXXFP/GP MASK ROM CONFIRMATION FORM (2) Which kind CIN Ceramic resonator External clock input What frequency do you use? f CIN (3) Which operation mode do you use? Single-chip mode Microprocessor mode (4) Which operating ambient temperature do you use? – ...

Page 178

... Mitsubishi will create the mask using the data on the EPROMs supplied, providing the data is the same on at least two of those sets. Mitsubishi will, therefore, only accept liability if there is any discrepancy between the data on the EPROM sets and the ROM data written to the product. ...

Page 179

... In the case of floppy disks Mitsubishi processes the mask files generated by the mask file generation utilities out of those held on the floppy disks you give in to us, and forms them into masks. Hence, we assume liability provided that there is any discrepancy between the contents of these mask files and the ROM data to be burned into products we produce ...

Page 180

... GZZ SH11 51B <71A1> MITSUBISHI ELECTRIC SINGLE-CHIP 16-BIT MICROCOMPUTER M30610MCA-XXXFP/GP MASK ROM CONFIRMATION FORM (2) Which kind of X CIN Ceramic resonator External clock input What frequency do you use? f CIN (3) Which operation mode do you use? Single-chip mode Microprocessor mode (4) Which operating ambient temperature do you use? – ...

Page 181

... Mitsubishi will create the mask using the data on the EPROMs supplied, providing the data is the same on at least two of those sets. Mitsubishi will, therefore, only accept liability if there is any discrepancy between the data on the EPROM sets and the ROM data written to the product. ...

Page 182

... In the case of floppy disks Mitsubishi processes the mask files generated by the mask file generation utilities out of those held on the floppy disks you give in to us, and forms them into masks. Hence, we assume liability provided that there is any discrepancy between the contents of these mask files and the ROM data to be burned into products we produce ...

Page 183

... GZZ SH12 35B <79A1> MITSUBISHI ELECTRIC SINGLE-CHIP 16-BIT MICROCOMPUTER M30612M4A-XXXFP/GP MASK ROM CONFIRMATION FORM (2) Which kind CIN Ceramic resonator External clock input What frequency do you use? f CIN (3) Which operation mode do you use? Single-chip mode Microprocessor mode (4) Which operating ambient temperature do you use? – ...

Page 184

... Mitsubishi will create the mask using the data on the EPROMs supplied, providing the data is the same on at least two of those sets. Mitsubishi will, therefore, only accept liability if there is any discrepancy between the data on the EPROM sets and the ROM data written to the product. ...

Page 185

... In the case of floppy disks Mitsubishi processes the mask files generated by the mask file generation utilities out of those held on the floppy disks you give in to us, and forms them into masks. Hence, we assume liability provided that there is any discrepancy between the contents of these mask files and the ROM data to be burned into products we produce ...

Page 186

... GZZ SH12 34B <79A1> MITSUBISHI ELECTRIC SINGLE-CHIP 16-BIT MICROCOMPUTER M30612M8A-XXXFP/GP MASK ROM CONFIRMATION FORM (2) Which kind of X CIN Ceramic resonator External clock input What frequency do you use? f CIN (3) Which operation mode do you use? Single-chip mode Microprocessor mode (4) Which operating ambient temperature do you use? – ...

Page 187

... Mitsubishi will create the mask using the data on the EPROMs supplied, providing the data is the same on at least two of those sets. Mitsubishi will, therefore, only accept liability if there is any discrepancy between the data on the EPROM sets and the ROM data written to the product. ...

Page 188

... In the case of floppy disks Mitsubishi processes the mask files generated by the mask file generation utilities out of those held on the floppy disks you give in to us, and forms them into masks. Hence, we assume liability provided that there is any discrepancy between the contents of these mask files and the ROM data to be burned into products we produce ...

Page 189

... GZZ SH11 55B <71A1> MITSUBISHI ELECTRIC SINGLE-CHIP 16-BIT MICROCOMPUTER M30612MAA-XXXFP/GP MASK ROM CONFIRMATION FORM (2) Which kind CIN Ceramic resonator External clock input What frequency do you use? f CIN (3) Which operation mode do you use? Single-chip mode Microprocessor mode (4) Which operating ambient temperature do you use? – ...

Page 190

... Mitsubishi will create the mask using the data on the EPROMs supplied, providing the data is the same on at least two of those sets. Mitsubishi will, therefore, only accept liability if there is any discrepancy between the data on the EPROM sets and the ROM data written to the product. ...

Page 191

... In the case of floppy disks Mitsubishi processes the mask files generated by the mask file generation utilities out of those held on the floppy disks you give in to us, and forms them into masks. Hence, we assume liability provided that there is any discrepancy between the contents of these mask files and the ROM data to be burned into products we produce ...

Page 192

... GZZ SH11 54B <71A1> MITSUBISHI ELECTRIC SINGLE-CHIP 16-BIT MICROCOMPUTER M30612MCA-XXXFP/GP MASK ROM CONFIRMATION FORM (2) Which kind of X CIN Ceramic resonator External clock input What frequency do you use? f CIN (3) Which operation mode do you use? Single-chip mode Microprocessor mode (4) Which operating ambient temperature do you use? – ...

Page 193

... Weight(g) Lead Material 1.58 Alloy Detail F Weight(g) Lead Material Cu Alloy Detail F Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER Plastic 100pin 14 20mm body QFP Recommended Mount Pad Dimension in Millimeters Symbol Min Nom A – – 0 – ...

Page 194

... TA1 and Port P7 are N-channel 0 1 Internal 20 sources External 5 sources Software 4 sources DMA0 DMA1 A-D Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER M30600M8 64 K bytes 10 K bytes CS0 90000 to FFFFF 16 16 (besides internal area) CS1 10000 to 8FFFF 16 16 CS2 ...

Page 195

... Mitsubishi microcomputers M16C / 61 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER 195 ...

Page 196

... All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Mitsubishi Electric Corporation without notice due to product improvements or other reasons therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for the latest product information before purchasing a product listed herein ...

Page 197

... MITSUBISHI SEMICONDUCTORS M16C/61 Group Specification REV.E Apr. First Edition 1999 Editioned by Committee of editing of Mitsubishi Semiconductor Published by Mitsubishi Electric Corp., Kitaitami Works This book, or parts thereof, may not be reproduced in any form without permission of Mitsubishi Electric Corporation. ©1999 MITSUBISHI ELECTRIC CORPORATION ...

Related keywords