LNK353GN Power Integrations, LNK353GN Datasheet - Page 3

IC OFFLINE SWIT OCP HV 8SMD

LNK353GN

Manufacturer Part Number
LNK353GN
Description
IC OFFLINE SWIT OCP HV 8SMD
Manufacturer
Power Integrations
Series
LinkSwitch®-HFr
Type
Off Line Switcherr
Datasheet

Specifications of LNK353GN

Output Isolation
Isolated
Frequency Range
186 ~ 214kHz
Voltage - Output
700V
Power (watts)
4W
Operating Temperature
-40°C ~ 150°C
Package / Case
8-SMD Gull Wing, 7 Leads
Output Voltage
5.8 V
Input / Supply Voltage (max)
265 VAC
Input / Supply Voltage (min)
85 VAC
Duty Cycle (max)
63 %
Switching Frequency
200 KHz
Supply Current
280 uA
Operating Temperature Range
- 40 C to + 150 C
Mounting Style
SMD/SMT
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Other names
596-1172
LNK353GN

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Company:
Part Number:
LNK353GN
Quantity:
15 000
Part Number:
LNK353GN-TL
Manufacturer:
POWER
Quantity:
20 000
LinkSwitch-HF Functional
Description
LinkSwitch-HF combines a high voltage power MOSFET
switch with a power supply controller in one device. Unlike
conventional PWM (pulse width modulator) controllers,
LinkSwitch-HF uses a simple ON/OFF control to regulate the
output voltage. The LinkSwitch-HF controller consists of an
oscillator, feedback (sense and logic) circuit, 5.8 V regulator,
BYPASS pin under-voltage circuit, over-temperature protection,
frequency jittering, current limit circuit, leading edge blanking
and a 700 V power MOSFET. The LinkSwitch-HF incorporates
additional circuitry for auto-restart.
Oscillator
The typical oscillator frequency is internally set to an average
of 200 kHz. Two signals are generated from the oscillator: the
maximum duty cycle signal (DC
indicates the beginning of each cycle.
The LinkSwitch-HF oscillator incorporates circuitry that
introduces a small amount of frequency jitter, typically 16 kHz
peak-to-peak, to minimize EMI emission. The modulation rate of
the frequency jitter is set to 1.5 kHz to optimize EMI reduction
for both average and quasi-peak emissions. The frequency
jitter should be measured with the oscilloscope triggered at
the falling edge of the DRAIN waveform. The waveform in
Figure 4 illustrates the frequency jitter of the LinkSwitch-HF.
Feedback Input Circuit
The feedback input circuit at the FB pin consists of a low
impedance source follower output set at 1.65 V. When the current
delivered into this pin exceeds 49 µA, a low logic level (disable)
is generated at the output of the feedback circuit. This output
is sampled at the beginning of each cycle on the rising edge of
the clock signal. If high, the power MOSFET is turned on for
that cycle (enabled), otherwise the power MOSFET remains off
(disabled). Since the sampling is done only at the beginning of
each cycle, subsequent changes in the FB pin voltage or current
during the remainder of the cycle are ignored.
5.8 V Regulator and 6.3 V Shunt Voltage Clamp
The 5.8 V regulator charges the bypass capacitor connected
to the BYPASS pin to 5.8 V by drawing a current from the
voltage on the DRAIN, whenever the MOSFET is off. The
BYPASS pin is the internal supply voltage node for the
LinkSwitch-HF. When the MOSFET is on, the LinkSwitch-HF
runs off of the energy stored in the bypass capacitor. Extremely
low power consumption of the internal circuitry allows the
LinkSwitch-HF to operate continuously from the current drawn
from the DRAIN pin. A bypass capacitor value of 0.1 µF is sufficient
for both high frequency decoupling and energy storage.
In addition, there is a 6.3 V shunt regulator clamping the
BYPASS pin at 6.3 V when current is provided to the BYPASS
MAX
) and the clock signal that
pin through an external resistor. This facilitates powering of
LinkSwitch-HF externally through a bias winding to decrease
the no-load consumption to less than 50 mW.
BYPASS Pin Under-Voltage
The BYPASS pin under-voltage circuitry disables the power
MOSFET when the BYPASS pin voltage drops below 4.85 V.
Once the BYPASS pin voltage drops below 4.85 V, it must rise
back to 5.8 V to enable (turn-on) the power MOSFET.
Over-Temperature Protection
The thermal shutdown circuitry senses the die temperature.
The threshold is set at 142 °C typical with a 75 °C hysteresis.
When the die temperature rises above this threshold (142 °C) the
power MOSFET is disabled and remains disabled until the die
temperature falls by 75 °C, at which point it is re-enabled.
Current Limit
The current limit circuit senses the current in the power MOSFET.
When this current exceeds the internal threshold (I
power MOSFET is turned off for the remainder of that cycle.
The leading edge blanking circuit inhibits the current limit
comparator for a short time (t
is turned on. This leading edge blanking time has been set so
that current spikes caused by capacitance and rectifier reverse
recovery time will not cause premature termination of the
switching pulse.
Auto-Restart
In the event of a fault condition such as output overload, output
short circuit, or an open loop condition, LinkSwitch-HF enters
into auto-restart operation. An internal counter clocked by the
oscillator gets reset every time the FB pin is pulled high. If
the FB pin is not pulled high for 30 ms, the power MOSFET
switching is disabled for 650 ms. The auto-restart alternately
enables and disables the switching of the power MOSFET until
the fault condition is removed.
400
300
200
100
600
500
Figure 4. Frequency Jitter.
0
0
Time (µs)
208 kHz
192 kHz
V
DRAIN
LEB
) after the power MOSFET
LNK353/354
2/05
LIMIT
F
), the
3
6.4

Related parts for LNK353GN