ATMEGA162-16MC Atmel, ATMEGA162-16MC Datasheet - Page 171

IC MCU AVR 16K 5V 16MHZ 44-QFN

ATMEGA162-16MC

Manufacturer Part Number
ATMEGA162-16MC
Description
IC MCU AVR 16K 5V 16MHZ 44-QFN
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheets

Specifications of ATMEGA162-16MC

Core Processor
AVR
Core Size
8-Bit
Speed
16MHz
Connectivity
EBI/EMI, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
35
Program Memory Size
16KB (8K x 16)
Program Memory Type
FLASH
Eeprom Size
512 x 8
Ram Size
1K x 8
Voltage - Supply (vcc/vdd)
4.5 V ~ 5.5 V
Oscillator Type
Internal
Operating Temperature
0°C ~ 70°C
Package / Case
44-VQFN Exposed Pad
Lead Free Status / RoHS Status
Contains lead / RoHS non-compliant
Data Converters
-
Sending Frames with 9 Data
Bit
Transmitter Flags and
Interrupts
2513C–AVR–09/02
If 9-bit characters are used (UCSZ = 7), the ninth bit must be written to the TXB8 bit in
UCSRB before the low byte of the character is written to UDR. The following code
examples show a transmit function that handles 9-bit characters. For the assembly
code, the data to be sent is assumed to be stored in Registers R17:R16.
Note:
The ninth bit can be used for indicating an address frame when using multi processor
communication mode or for other protocol handling as for example synchronization.
The USART Transmitter has two flags that indicate its state: USART Data Register
Empty (UDRE) and Transmit Complete (TXC). Both flags can be used for generating
interrupts.
The Data Register Empty (UDRE) flag indicates whether the transmit buffer is ready to
receive new data. This bit is set when the transmit buffer is empty, and cleared when the
transmit buffer contains data to be transmitted that has not yet been moved into the Shift
Register. For compatibility with future devices, always write this bit to zero when writing
the UCSRA Register.
When the Data Register Empty Interrupt Enable (UDRIE) bit in UCSRB is written to one,
the USART Data Register Empty Interrupt will be executed as long as UDRE is set (pro-
vided that global interrupts are enabled). UDRE is cleared by writing UDR. When
interrupt-driven data transmission is used, the Data Register Empty Interrupt routine
must either write new data to UDR in order to clear UDRE or disable the Data Register
Assembly Code Example
C Code Example
USART_Transmit:
void USART_Transmit( unsigned int data )
{
}
; Wait for empty transmit buffer
sbis UCSRA,UDRE
rjmp USART_Transmit
; Copy 9th bit from r17 to TXB8
cbi
sbrc r17,0
sbi
; Put LSB data (r16) into buffer, sends the data
out
ret
/* Wait for empty transmit buffer */
while ( !( UCSRA & (1<<UDRE)) )
/* Copy 9th bit to TXB8 */
UCSRB &= ~(1<<TXB8);
if ( data & 0x0100 )
/* Put data into buffer, sends the data */
UDR = data;
1. These transmit functions are written to be general functions. They can be optimized if
UCSRB |= (1<<TXB8);
the contents of the UCSRB is static. For example, only the TXB8 bit of the UCSRB
Register is used after initialization.
UCSRB,TXB8
UCSRB,TXB8
UDR,r16
;
(1)
(1)
ATmega162(V/U/L)
171

Related parts for ATMEGA162-16MC