AD6620AS Analog Devices Inc, AD6620AS Datasheet - Page 20

IC DGTL RCVR SIGNAL PROC 80-PQFP

AD6620AS

Manufacturer Part Number
AD6620AS
Description
IC DGTL RCVR SIGNAL PROC 80-PQFP
Manufacturer
Analog Devices Inc
Datasheet

Specifications of AD6620AS

Rohs Status
RoHS non-compliant
Interface
Parallel/Serial
Voltage - Supply
3 V ~ 3.6 V
Package / Case
80-MQFP, 80-PQFP
Mounting Type
*
Applications
-

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
AD6620AS
Manufacturer:
ADI
Quantity:
465
Part Number:
AD6620AS
Manufacturer:
XILINX
0
Part Number:
AD6620AS
Manufacturer:
ADI/亚德诺
Quantity:
20 000
Part Number:
AD6620ASZ
Manufacturer:
Analog Devices Inc
Quantity:
10 000
Part Number:
AD6620ASZ-REEL
Manufacturer:
Analog Devices Inc
Quantity:
10 000
AD6620
modes, f
cycles on which A/B has been toggled. The NCO worst case
discrete spur is better than –100 dBc for all output frequencies.
The control word, NCO_FREQ is interpreted as a 32-bit unsigned
integer. To translate a channel centered at f
NCO_FREQ using the equation below. The mod function is
used here to allow for Super Nyquist sampling where the IF
carrier (fCH) is larger than the sample rate (fSAMP). The mod
removes the integer portion of the number and forces it into the
32-bit NCO Frequency Register. If the fraction remaining is
larger than 0.5, the NCO will be tuning above the Nyquist rate.
The corresponding signal is then aliased back into the first Nyquist
Zone as a negative frequency.
In both Single and Diversity Channel Real Input modes, the out-
put of the translation stage is the complex product of the real
input samples and the complex samples from the NCO. It is
necessary for the subsequent decimating filters to reject the
unwanted image of the channel of interest, as well as any unwanted
neighboring signals (and their images) not rejected by previ-
ous analog filters.
In the Diversity Channel Real Input mode, the same NCO output
words are used for both channel A and B streams, resulting in
identical phase shifts. In Single Channel Complex mode both I
and Q inputs are multiplied by the quadrature outputs of the
NCO. The I and Q products of the multiply are then processed
in the AD6620 filter stages.
In single channel real or dual channel real operation, the frequency
translation and filtering processes provide a gain of –6 dB. This
can be visualized since the input data is usually a real sampled
signal consisting of both positive and negative frequency compo-
nents (Figure 2a). After being mixed with the complex NCO,
the normal filtering of the AD6620 will remove one component
or the other resulting in an analytic signal (Figure 2b). This
filtering thus removes one-half or 6 dB of the signal keeping
consistent with the mathematics involved. If however, the filter-
ing of the device allows both the positive and negative frequency
components to pass (i.e., the original signal is near dc), the gain
of the frequency translation is 0 dB. Finally, if the NCO is
bypassed, the gain of the frequency translation block is –12 dB.
Phase Dither
The AD6620 provides a phase dither option for improving the
spurious performance of the NCO. This is controlled via the
NCO Control Register at address 301 hex. When phase dither is
enabled by setting Bit 1 of this register high, spurs due to phase
truncation in the NCO are randomized. The energy from these
spurs is spread into the noise floor and Spurious Free Dynamic
Range is increased at the expense of very slight decreases in the
SNR. Phase dither should be experimented with for each desired
NCO frequency and if it is seen to reduce spurs, it should be
considered. The choice of whether Phase Dither is used in a
system will ultimately be decided by the system goals. If lower
spurs are desired at the expense of a slightly raised noise floor, it
should be employed. If a low noise floor is desired and the higher
spurs can be tolerated or filtered by subsequent stages, then
Phase Dither is not needed.
SAMP
NCO FREQ
is equal to f
_
CLK
=
multiplied by the fraction of CLK
2
32
×
mod
f
SAMP
CH
f
CH
to dc, calculate
,
1
Amplitude Dither
The second dither option is Amplitude Dither or “Complex
Dither.” Amplitude Dither is enabled by setting Bit 2 of the
NCO Control Register at address 0x301 high. Amplitude Dither
improves performance by randomizing the amplitude quantiza-
tion errors within the angular to Cartesian conversion of the
NCO. This dither will be particularly useful when the NCO
frequency is close to an integer submultiple of the Input Data
Rate. However, this option may reduce spurs at the expense of a
slightly raised noise floor. Amplitude Dither and Phase Dither
can be used together, separately or not at all.
Phase Offset
The phase offset register adds an offset to the phase accumula-
tor of the NCO. This is a 16-bit register and is interpreted as a
16-bit unsigned integer. A 0 in this register corresponds to a 0
Radian offset and an FFFF hex corresponds to an offset of 2 π
(1 – 1/(2^16)) Radians. This register can be used to allow mul-
tiple AD6620s whose NCOs are synchronized to produce sine
waves with a known and steady phase difference.
NCO Synchronization
In order to achieve phase coherence between several AD6620s,
a SYNC_NCO pin is provided. When the internal register
bit, SYNC_M/S (Bit 3 of internal register 0x300), is set high,
SYNC_NCO provides a synchronization pulse on the rising
edge of CLK. When the SYNC_M/S bit is low, SYNC_NCO
accepts an external synchronization signal sampled on the rising
edge of CLK. When the AD6620 is a slave, the SYNC_NCO
signal need not be a short pulse. It may be taken high and held
for more than a CLK cycle in which case the NCO will be held
inactive until this pin is again lowered. If the device is run as a
sync slave in Single Channel Mode, the SYNC_NCO pin must
be held low for one sample period, usually one clock cycle. If the
device is run in Diversity Channel Real mode, the SYNC_NCO
must be high for two sample periods (clock cycles). In a system
with an array of AD6620s it is not necessary to use one as a
master. It may be desirable to generate a synchronization signal
elsewhere in the system and use that to control the AD6620. An
example of this may be in systems that receive packets of data.
In this case, the NCO may be resynchronized prior to the begin-
ning of the packet, thus giving a consistent phase relationship on
each burst. This allows for ease of use in a large system where
many AD6620s need be synchronized accurately across a large
backplane or installation.
SYNC NCO
SYNC RCF
SYNC CIC
CLK
NOTE:
IN THE SLAVE MODE WITH SINGLE CHANNEL OPERATION, THE WIDTH
OF THE SYNC_NCO SHOULD BE ONE SAMPLE CLOCK CYCLE. IN DUAL
CHANNEL MODE, THE PULSEWIDTH SHOULD BE TWO SAMPLE CLOCK
CYCLES. IF A PULSE LONGER THAN SPECIFIED IS USED, THE NCO WILL
BE INHIBITED AND NOT INCREMENT PROPERLY.
t
DY

Related parts for AD6620AS