SI5321-H-BL Silicon Laboratories Inc, SI5321-H-BL Datasheet

no-image

SI5321-H-BL

Manufacturer Part Number
SI5321-H-BL
Description
IC CLOCK MULT SONET/SDH 63-PBGA
Manufacturer
Silicon Laboratories Inc
Datasheet

Specifications of SI5321-H-BL

Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
SI5321-H-BL
Manufacturer:
SILICON
Quantity:
77
Part Number:
SI5321-H-BL
Manufacturer:
FUJ
Quantity:
1 800
Part Number:
SI5321-H-BL
Manufacturer:
Silicon Laboratories Inc
Quantity:
10 000
SONET/SDH P
Features
Applications
Description
The Si5321 is a precision clock multiplier that exceeds the requirements of high-speed
communication systems, including OC-192/OC-48 and 10 Gigabit Ethernet. This device
phase locks to an input clock in the 19, 39, 78, 155, 311 or 622 MHz frequency range
and generates a frequency-multiplied clock output that can be configured for operation
in the 19, 39, 78, 155, 622, 1244, or 2488 MHz frequency range. Silicon Laboratories
DSPLL
eliminates external loop filter components, provides programmable loop parameters,
and simplifies design. FEC rates are supported by selectable forward and reverse 255/
238 (15/14), 255/237 (85/79), and 66/64 (33/32) conversion factors. The ITU-T G.709
255/237 rate and the IEEE 802.3ae 66/64 rate are supported when using a 155 MHz or
higher rate input clock. The performance and integration of Silicon Laboratories’ Si5321
clock IC provides high-level support of the latest specifications and systems. It operates
from a single 3.3 V supply.
Functional Block Diagram
Rev. 2.5 8/08
FXDDELAY
VALTIME
CLKIN+
CLKIN–
Ultra-low jitter clock output with jitter
generation as low as 0.3 ps
No external components (other than a
resistor and bypassing)
Input clock ranges at 19, 39, 78, 155,
311, or 622 MHz
Output clock ranges at 19, 39, 78, 155,
311, 622, 1244, or 2488 MHz
Maximum range includes 693 MHz for
10 GbE FEC support
SONET/SDH line/port cards
Terabit routers
LOS
®
technology provides PLL functionality with unparalleled performance. It
2
REXT
Signal
Detect
Biasing & Supply Regulation
INFRQSEL[2:0]
VSEL33
RMS
3
÷
R E C I S IO N
FEC[2:0]
VDD
2
Copyright © 2008 by Silicon Laboratories
DSPLL
BWBOOST
Digital hold for loss-of-input clock
Support for 255/238 (15/14),
255/237 (85/79), and 66/64 FEC scaling
(ITU-T G.709 and IEEE 802.3ae)
Selectable loop bandwidth
Loss-of-signal alarm output
Low power
Small size (9 x 9 mm)
Backwards compatible with Si5320
Core switches
Digital cross connects
GND
BWSEL[1:0]
®
2
C
Calibration
LOCK
÷
2
M
RSTN/CAL
CAL_ACTV
DH_ACTV
CLKOUT+
CLKOUT–
FRQSEL[2:0]
ULTIPLIER
Ordering Information:
See page 30.
Si5321
I C
Si5321
Si5321
Si5321

Related parts for SI5321-H-BL

SI5321-H-BL Summary of contents

Page 1

... SONET/SDH line/port cards Terabit routers Description The Si5321 is a precision clock multiplier that exceeds the requirements of high-speed communication systems, including OC-192/OC-48 and 10 Gigabit Ethernet. This device phase locks to an input clock in the 19, 39, 78, 155, 311 or 622 MHz frequency range and generates a frequency-multiplied clock output that can be configured for operation in the 19, 39, 78, 155, 622, 1244, or 2488 MHz frequency range. Silicon Laboratories ® ...

Page 2

... Si5321 2 Rev. 2.5 ...

Page 3

... Bias Generation Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 2.10. Differential Input Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.11. Differential Output Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.12. Power Supply Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.13. Design and Layout Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3. Pin Descriptions: Si5321 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23 4. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 5. Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 6. 9x9 mm PBGA Card Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33 Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34 Rev ...

Page 4

... All minimum and maximum specifications are guaranteed and apply across the recommended operating conditions. Typical values apply at nominal supply voltages and an operating temperature of 25 °C unless otherwise stated. 2. The Si5321 is guaranteed by design to operate at –40° C. All electrical specifications are guaranteed for an ambient temperature of –20 to 85° C. ...

Page 5

... C LKIN + C LKIN – peration with Single-Ended C lock Input* N ote: W hen using single-ended clock sources, the unused clock input on the Si5321 m ust be ac-coupled to ground. C LKIN + C LKIN – (C LKIN+) – (C LKIN – peration with D ifferential C lock Input N ote: Transm ission line term ination, when required, m ust be provided Figure 1 ...

Page 6

... Clock inputs may be driven differentially or single-endedly. When driven single-endedly, the unused input should be ac- coupled to ground. 3. Transmission line termination, when required, must be provided externally. 4. Although the Si5321 device can operate with input clock swings as high as 1500 mV maintaining the input clock amplitude below 500 ...

Page 7

... INFRQSEL[2:0] = 100 INFRQSEL[2:0] = 101 INFRQSEL[2:0] = 110 Note: The Si5321 provides a 1/32x, 1/16x, 1/8x, 1/4x, 1/2x, 1x, 2x, 4x, 8x, 16x, 32x, 64x, or 128x clock multiplication function with an option for additional frequency scaling by a factor of 255/238, 238/255, 255/237, 237/255, 66/64, or 64/66 for FEC rate conversion. ...

Page 8

... Output Clock Duty Cycle C RSTN/CAL Pulse Width Note: The Si5321 provides a 1/32x, 1/16x, 1/8x, 1/4x, 1/2x, 1x, 2x, 4x, 8x, 16x, 32x, 64x, or 128x clock multiplication function with an option for additional frequency scaling by a factor of 255/238, 238/255, 255/237, 237/255, 66/64, or 64/66 for FEC rate conversion. ...

Page 9

... LOS Condition VALTIME = 0 VALTIME = 1 Note: The Si5321 provides a 1/32x, 1/16x, 1/8x, 1/4x, 1/2x, 1x, 2x, 4x, 8x, 16x, 32x, 64x, or 128x clock multiplication function with an option for additional frequency scaling by a factor of 255/238, 238/255, 255/237, 237/255, 66/64, or 64/66 for FEC rate conversion. Symbol ...

Page 10

... For reliable device operation, temperature gradients should be limited to 10 °C/min. 3. Telcordia GR-1244-CORE requirements specify maximum phase transient slope during clock rearrangement in terms of nanoseconds per millisecond. The equivalent ps/μs unit is used here since the maximum phase transient magnitude for the Si5321 (tPT_MTIE) never reaches one nanosecond. 10 Symbol ...

Page 11

... For reliable device operation, temperature gradients should be limited to 10 °C/min. 3. Telcordia GR-1244-CORE requirements specify maximum phase transient slope during clock rearrangement in terms of nanoseconds per millisecond. The equivalent ps/μs unit is used here since the maximum phase transient magnitude for the Si5321 (tPT_MTIE) never reaches one nanosecond. Symbol Test Condition ...

Page 12

... For reliable device operation, temperature gradients should be limited to 10 °C/min. 3. Telcordia GR-1244-CORE requirements specify maximum phase transient slope during clock rearrangement in terms of nanoseconds per millisecond. The equivalent ps/μs unit is used here since the maximum phase transient magnitude for the Si5321 (tPT_MTIE) never reaches one nanosecond. 12 Symbol ...

Page 13

... For reliable device operation, temperature gradients should be limited to 10 °C/min. 3. Telcordia GR-1244-CORE requirements specify maximum phase transient slope during clock rearrangement in terms of nanoseconds per millisecond. The equivalent ps/μs unit is used here since the maximum phase transient magnitude for the Si5321 (tPT_MTIE) never reaches one nanosecond. Symbol Test Condition ...

Page 14

... For reliable device operation, temperature gradients should be limited to 10 °C/min. 3. Telcordia GR-1244-CORE requirements specify maximum phase transient slope during clock rearrangement in terms of nanoseconds per millisecond. The equivalent ps/μs unit is used here since the maximum phase transient magnitude for the Si5321 (tPT_MTIE) never reaches one nanosecond. 14 Symbol ...

Page 15

... Table 6. Thermal Characteristics Parameter Thermal Resistance Junction to Ambient 0 -20 -40 -60 -80 -100 -120 -140 -160 Figure 4. Typical Si5321 Phase Noise (CLKIN = 155.52 MHz, CLKOUT = 622.08 MHz, and Symbol Value V –0.5 to 3.6 DD33 V –0 DIG T –55 to 150 JCT T –55 to 150 STG Symbol Test Condition ϕ ...

Page 16

... Input Clock Source 0.1 μF Input Clock Frequency Select FEC Scaling Select PLL Bandwidth Select PLL Bandwidth Multiplier LOS Validation Time Powerdown Control Fixed Delay Mode Control Figure 5. Si5321 Typical Application Circuit (3.3 V Supply) 16 2200 kΩ 1% CLKIN+ CLKIN– INFRQSEL[2:0] Si5321 ...

Page 17

... The multiplication factor is configured by selecting the input and output clock frequency ranges for the device. The Si5321 accepts an input clock in the 19, 38, 77, 155, 311, or 622 MHz frequency range. The input frequency range is selected using the INFRQSEL[2:0] pins. The INFRQSEL[2:0] settings and associated output clock rates are listed in Table 8. The Si5321’ ...

Page 18

... MHz 6400 2.2.1. FEC Rate Conversion 6400 — The Si5321 provides a 1/32x, 1/16x, 1/8x, 1/4x, 1/2x, 1x, 2x, 4x, 8x, 16x, 32x, 64x, or 128x clock frequency 6400 multiplication function with an option for additional 6400 forward or reverse frequency scaling by a factor of 255/ ...

Page 19

... LOS condition is declared; the Si5321 goes into digital hold mode, and the LOS output alarm signal is set high. The LOS sampling circuitry runs at a frequency of f ...

Page 20

... The frequency accuracy specifications for digital hold mode are given in Table 4 on page 10. 2.6. Hitless Recovery from Digital Hold When the Si5321 device is locked to a valid input clock, a loss of the input clock switches the device to digital hold mode. When the input clock signal returns, the device performs a hitless transition from digital hold mode back to the selected input clock ...

Page 21

... V Typically, the resistor is incorporated into the capacitor’s equivalent series resistance (ESR). The target RC time constant for this combination μ s. The capacitor used in the Si5321 evaluation board μ f circuit. For tantalum capacitor with an ESR of 0.8 Ω . This gives an RC time constant of 26.4 μ ...

Page 22

... Precision clock circuits are susceptible to board noise and EMI. To take precautions against unacceptable levels of board noise and EMI affecting performance of the Si5321, consider the following: Power the device from 3.3 V since the internal regulator provides > isolation to the V pins (which power the PLL circuitry). ...

Page 23

... Pin Descriptions: Si5321 8 7 Rsvd_NC Rsvd_NC Rsvd_NC Rsvd_GND Rsvd_GND GND DH_ACTV VDD25 CAL_ACTV VDD25 LOS VDD25 GND GND FRQSEL[1] CLKOUT– Figure 10. Si5321 Pin Configuration (Bottom View Rsvd_NC Rsvd_NC Rsvd_NC FEC[0] Rsvd_GND Rsvd_NC FXDDELAY FRQSEL[2] GND GND GND GND VDD25 VDD33 ...

Page 24

... A FEC[1] B BWSEL[0] FEC[2] C BWSEL[1] VSEL33 D CLKIN+ BWBOOST E CLKIN– GND F INFRQSEL[0] GND G INFRQSEL[1] GND H INFRQSEL[2] REXT Figure 11. Si5321 Pin Configuration (Transparent Top View FEC[0] Rsvd_NC Rsvd_NC Rsvd_NC FRQSEL[2] FXDDELAY Rsvd_NC Rsvd_GND GND GND GND GND VDD33 VDD33 VDD33 VDD25 VDD33 VDD33 ...

Page 25

... H1 INFRQSEL[2] H6 CLKOUT+ H7 CLKOUT– *Note: The LVTTL inputs on the Si5321 device have an internal pulldown mechanism that causes the input to default to a logic low state if the input is not driven from an external source. Table 10. Si5321 Pin Descriptions Signal Level I AC Coupled System Clock Input. ...

Page 26

... B3 FRQSEL[2] A3 FEC[0] A2 FEC[1] B2 FEC[2] *Note: The LVTTL inputs on the Si5321 device have an internal pulldown mechanism that causes the input to default to a logic low state if the input is not driven from an external source. 26 I/O Signal Level I* LVTTL* Clock Output Frequency Range Select. Select the frequency range of the clock output, CLK- OUT ...

Page 27

... C1 BWSEL[1] D2 BWBOOST B4 FXDDELAY *Note: The LVTTL inputs on the Si5321 device have an internal pulldown mechanism that causes the input to default to a logic low state if the input is not driven from an external source. Signal Level I* LVTTL* Bandwidth Select. BWSEL[1:0] pins set the bandwidth of the loop filter within the DSPLL to 6400, 3200, 1600, or 800 Hz as indicated below ...

Page 28

... CAL_ACTV C2 VSEL33 D3–D5 DD33 E3–E5 *Note: The LVTTL inputs on the Si5321 device have an internal pulldown mechanism that causes the input to default to a logic low state if the input is not driven from an external source. 28 I/O Signal Level I* LVTTL* Clock Validation Time for LOS. ...

Page 29

... H2 REXT A4–8, B5, B8 RSVD_NC B6, B7, C8 RSVD_GND *Note: The LVTTL inputs on the Si5321 device have an internal pulldown mechanism that causes the input to default to a logic low state if the input is not driven from an external source. Signal Level 2.5 V Compensation Network. Supply DD These pins provide a means of connecting the compensation network for the on-chip regulator ...

Page 30

... Si5321 4. Ordering Guide Part Number Si5321-G-BC Si5321-H-BL Si5321-H-GL 30 Package Temperature Range 63-Ball CBGA – °C (Prior Revision) RoHS-5 63-Ball PBGA – °C (Current Revision) RoHS-5 63-Ball PBGA – °C (Current Revision) RoHS-6 Rev. 2.5 ...

Page 31

... Package Outline Figure 12 illustrates the package details for the Si5321. Table 11 lists the values for the dimensions shown in the illustration. Figure 12. 63-Ball Plastic Ball Grid Array (PBGA) Table 11. Package Diagram Dimensions (mm) Symbol Min Nom A 1.24 1.41 A1 0.40 0.50 A2 0.34 0.38 A3 0.50 ...

Page 32

... Si5321 6. 9x9 mm PBGA Card Layout Symbol Notes: General 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification. 3. This Land Pattern Design is based on the IPC-7351 guidelines. Solder Mask Design 1. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad µ ...

Page 33

... Updated Figure 12, “63-Ball Plastic Ball Grid Array (PBGA),” on page 31. Updated Table 11, “Package Diagram Dimensions (mm),” on page 31. Added Figure 4, “Typical Si5321 Phase Noise (CLKIN = 155.52 MHz, CLKOUT = 622.08 MHz, and Loop BW = 800 Hz),” on page 15. Revision 2.1 to Revision 2.2 Updated Table 3, “AC Characteristics,” on page 7. ...

Page 34

... Si5321 C I ONTACT NFORMATION Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 Tel: 1+(512) 416-8500 Fax: 1+(512) 416-9669 Toll Free: 1+(877) 444-3032 Email: Clockinfo@silabs.com Internet: www.silabs.com The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice. ...

Related keywords