ADXRS652BBGZ Analog Devices Inc, ADXRS652BBGZ Datasheet - Page 9

?250?/sec Yaw Rate Industrial Gyroscope

ADXRS652BBGZ

Manufacturer Part Number
ADXRS652BBGZ
Description
?250?/sec Yaw Rate Industrial Gyroscope
Manufacturer
Analog Devices Inc
Datasheet

Specifications of ADXRS652BBGZ

Range °/s
±250°/s
Sensitivity
7mV/°/s
Typical Bandwidth
2.5kHz
Voltage - Supply
4.75 V ~ 5.25 V
Current - Supply
3.5mA
Output Type
Ratiometric
Operating Temperature
-40°C ~ 105°C
Package / Case
32-CBGA
Acceleration Range
2000g
No. Of Axes
1
Sensor Case Style
BGA
No. Of Pins
32
Supply Voltage Range
4.75V To 5.25V
Operating Temperature Range
-40°C To +105°C
Lead Free Status / RoHS Status
Lead free by exemption / RoHS compliant by exemption
Lead Free Status / RoHS Status
Lead free by exemption / RoHS compliant by exemption
THEORY OF OPERATION
The ADXRS652 operates on the principle of a resonator gyro.
Two polysilicon sensing structures each contain a dither frame
that is electrostatically driven to resonance, producing the neces-
sary velocity element to produce a Coriolis force during angular
rate. At two of the outer extremes of each frame, orthogonal to
the dither motion, are movable fingers that are placed between
fixed pickoff fingers to form a capacitive pickoff structure that
senses Coriolis motion. The resulting signal is fed to a series of
gain and demodulation stages that produce the electrical rate
signal output. The dual-sensor design rejects external -forces and
vibration. Fabricating the sensor with the signal conditioning
electronics preserves signal integrity in noisy environments.
The electrostatic resonator requires 18 V to 20 V for operation.
Because only 5 V are typically available in most applications,
a charge pump is included on chip. If an external 18 V to 20 V
supply is available, the two capacitors on CP1 to CP4 can be
omitted, and this supply can be connected to CP5 (Pin 6D,
Pin 7D). CP5 should not be grounded when power is applied to
the ADXRS652. No damage occurs, but under certain conditions,
the charge pump may fail to start up after the ground is removed
without first removing power from the ADXRS652.
SETTING BANDWIDTH
External Capacitor C
chip R
of the ADXRS652 rate response. The −3 dB frequency set by
R
and can be well controlled because R
during manufacturing to be 180 kΩ ± 1%. Any external resistor
applied between the RATEOUT pin (1B, 2A) and SUMJ pin
(1C, 2C) results in
In general, an additional filter (in either hardware or software)
is added to attenuate high frequency noise arising from demodu-
lation spikes at the 14 kHz resonant frequency of the gyro. The
noise spikes at 14 kHz can be clearly seen in the power spectral
density curve, shown in Figure 21. Normally, this additional
filter corner frequency is set to greater than five times the
required bandwidth to preserve good phase response.
Figure 22 shows the effect of adding a 250 Hz filter to the
output of an ADXRS652 set to 40 Hz bandwidth (as shown
in Figure 21). High frequency demodulation artifacts are
attenuated by approximately 18 dB.
OUT
and C
OUT
resistor to create a low-pass filter to limit the bandwidth
=
=
OUT
/ 1
(
180
is
(
2
×
π
×
OUT
×
is used in combination with the on-
) (
×
/
180
)
OUT
+
has been trimmed
)
Rev. A | Page 9 of 12
TEMPERATURE OUTPUT AND CALIBRATION
It is common practice to temperature-calibrate gyros to improve
their overall accuracy. The ADXRS652 has a temperature propor-
tional voltage output that provides input to such a calibration
method. The temperature sensor structure is shown in Figure 23.
The temperature output is characteristically nonlinear, and any
load resistance connected to the TEMP output results in decreasing
the TEMP output and its temperature coefficient. Therefore,
buffering the output is recommended.
The voltage at TEMP (3F, 3G) is nominally 2.5 V at 25°C, and
V
Although the TEMP output is highly repeatable, it has only
modest absolute accuracy.
MODIFYING THE ADXRS652 SCALE TO MATCH
THE ADXRS620
The ADXRS652 scale factor can be modified to match the
6 mV/°/sec scale factor of the ADXRS620 by adding a single
1.07 MΩ resistor between the RATEOUT and SUMJ. No other
performance characteristics are affected by adding this resistor.
CALIBRATED PERFORMANCE
Using a three-point calibration technique, it is possible to
calibrate the ADXRS652 null and sensitivity drift to an overall
accuracy of nearly 200°/hour. An overall accuracy of 40°/hour
or better is possible using more points. Limiting the bandwidth
of the device reduces the flat-band noise during the calibration
process, improving the measurement accuracy at each
calibration point.
RATIO
0.000001
0.00001
0.0001
0.001
Figure 22. Noise Spectral Density with Additional 250 Hz Filter
= 5 V. The temperature coefficient is ~9 mV/°C at 25°C.
0.01
0.1
10
Figure 23. Temperature Sensor Structure
V
RATIO
100
R
FIXED
FREQUENCY (Hz)
R
TEMP
1k
V
TEMP
10k
ADXRS652
100k

Related parts for ADXRS652BBGZ