AD977AARZ Analog Devices Inc, AD977AARZ Datasheet - Page 12

no-image

AD977AARZ

Manufacturer Part Number
AD977AARZ
Description
200 KSPS 16 BIT ADC
Manufacturer
Analog Devices Inc
Datasheet

Specifications of AD977AARZ

Number Of Bits
16
Sampling Rate (per Second)
200k
Data Interface
Serial, SPI™
Number Of Converters
1
Power Dissipation (max)
100mW
Voltage Supply Source
Analog and Digital
Operating Temperature
-40°C ~ 85°C
Mounting Type
Surface Mount
Package / Case
20-SOIC (0.300", 7.50mm Width)
Number Of Elements
1
Resolution
16Bit
Architecture
SAR
Sample Rate
200KSPS
Input Polarity
Unipolar/Bipolar
Input Type
Voltage
Differential Input
No
Power Supply Requirement
Analog and Digital
Single Supply Voltage (typ)
5V
Single Supply Voltage (min)
4.75V
Single Supply Voltage (max)
5.25V
Dual Supply Voltage (typ)
Not RequiredV
Dual Supply Voltage (min)
Not RequiredV
Dual Supply Voltage (max)
Not RequiredV
Power Dissipation
100mW
Differential Linearity Error
±3LSB
Integral Nonlinearity Error
±3LSB
Operating Temp Range
-40C to 85C
Operating Temperature Classification
Industrial
Mounting
Surface Mount
Pin Count
20
Package Type
SOIC W
Input Signal Type
Single-Ended
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
AD977AARZ
Manufacturer:
ADI/亚德诺
Quantity:
20 000
Part Number:
AD977AARZ-REEL
Manufacturer:
BOURNS
Quantity:
60 000
AD977/AD977A
For both the AD977 and the AD977A the data should be
clocked out during the first half of BUSY so not to degrade
conversion performance. For the AD977 this requires use of a
4.8 MHz DATACLK or greater, with data being read out as
soon as the conversion process begins. For the AD977A it
requires use of a 10 MHz DATACLK or greater.
It is not recommended that data be shifted through the TAG
input in this mode as it will certainly result in clocking of data
during the second half of the conversion.
EXTERNAL CONTINUOUS CLOCK DATA READ AFTER
CONVERSION WITH SYNC OUTPUT GENERATED
Figure 8 illustrates the method by which data from conversion
“n” can be read after the conversion is complete using a con-
tinuous external clock, with the generation of a SYNC output.
What permits the generation of a SYNC output is a transition of
DATACLK while either CS is high or while both CS and R/C are
low.
With a continuous clock the CS pin cannot be tied low as it
could be with a discontinuous clock. Use of a continuous clock,
while a conversion is occurring, can increase the DNL and
Transition Noise of the AD977/AD977A.
DATACLK
DATA
BUSY
SYNC
TAG
EXT
R/C
CS
t
16
t
t
1
2
t
13
0
t
16
t
t
12
17
t
14
1
t
15
t
t
TAG 0
23
12
t
t
24
18
2
TAG 1
BIT 15
(MSB)
3
After a conversion is complete, indicated by BUSY returning
high, the result of that conversion can be read while CS is low
and R/C is high. In Figure 8 clock pulse #0 is used to enable the
generation of a SYNC pulse. The SYNC pulse is actually clocked
out approximately 40 ns after the rising edge of clock pulse #1.
The SYNC pulse will be valid on the falling edge of clock pulse
#1 and the rising edge of clock pulse #2. The MSB will be valid
on the falling edge of clock pulse #2 and the rising edge of clock
pulse #3. The LSB will be valid on the falling edge of clock
pulse #17 and the rising edge of clock pulse #18. Approximately
50 ns after the rising edge of clock pulse #18 the DATA output
pin will reflect the state of the TAG input pin during the rising
edge of clock pulse #2.
When reading data after the conversion is complete, with the
highest frequency permitted for DATACLK (15.15 MHz) and,
with the AD977A, the maximum possible throughput is approxi-
mately 195 kHz and not the rated 200 kHz.
For details on use of the TAG input with this mode see the Use
of the TAG Input section.
BIT 14
TAG 2
4
17
TAG 16
(LSB)
BIT 0
18
t
18
INT
TAG 0
TAG 17
t
19
TAG 1
TAG 18
TAG 2
TAG 19

Related parts for AD977AARZ