EVAL-AD5560EBUZ Analog Devices Inc, EVAL-AD5560EBUZ Datasheet - Page 28

no-image

EVAL-AD5560EBUZ

Manufacturer Part Number
EVAL-AD5560EBUZ
Description
Evaluation Board
Manufacturer
Analog Devices Inc
Datasheet

Specifications of EVAL-AD5560EBUZ

Main Purpose
Power Management, Power Supply Supervisor/Tracker/Sequencer
Utilized Ic / Part
AD5560
Primary Attributes
*
Secondary Attributes
*
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Embedded
-
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
AD5560
GPO
The GPO pin can be used as an extra control bit for external
switching functions, such as for switching out DUT decoupling
when making low current measurements.
The GPO pin is also internally connected to an array of thermal
diodes scattered across the AD5560. The diagnostic register
(Address 0x7) details the addressing and location of the diodes.
These can be used for diagnostic purposes to determine the
thermal gradients across the die and across a board containing
many AD5560 devices. When selected, the anode of these
diodes is connected to GPO and the cathode to AGND. The
AD5560 evaluation board uses the ON Semiconductor®
ADT7461 temperature sensor for the purpose of analyzing the
temperature at different points across the die.
COMPARATORS
The DUT measured value is monitored by two comparators
(CPOL, CPOH). These comparators give the advantage of
speed for go-no-go testing.
Table 6. Comparator Output Function
Test Condition
(V
(V
(V
(V
CPH > (V
To minimize the number of comparator output lines routed
back to the controller, it is possible to change the comparator
function to a window comparator that outputs on one single
pin, CPO. This pin is shared with CPOH and, when configured
through the serial interface, it provides information on whether
the measured DUT current or voltage is inside or outside the
window set by the CPL and CPH DAC levels (see Table 24).
Table 7. Comparator Output Function in CPO Mode
Test Condition
(V
(V
CURRENT CLAMPS
High and low current clamps are included on chip. These protect
the DUT in the event of a short circuit. The CLH and CLL
levels are set by the 16-bit DAC levels. The clamp works to
limit the current supplied by the force amplifier to within the
set levels. The clamp circuitry compares the voltage across the
sense resistor (multiplied by an in-amp gain of 10 or 20) to
compare to the programmed clamp limit and activates the
clamp circuit if either the high level or low level is exceeded,
thus ensuring that the DUT current can never exceed the
programmed clamp limit + 10% of full-scale current.
DUT
DUT
DUT
DUT
DUT
DUT
or I
or I
or I
or I
or I
or I
DUT
DUT
DUT
DUT
DUT
DUT
DUT
) > CPH
) < CPH
) > CPL
) < CPL
) > CPL and < CPH
) < CPL or > CPH
or I
DUT
) > CPL
CPOL
1
0
1
CPO Output
1
0
CPOH
0
1
1
Rev. C | Page 28 of 60
If a clamp level is exceeded, this is flagged via the latched open-
drain CLALM pin, and the resulting alarm information can be
read back via the SPI interface.
The clamp levels should not be set to the same level; instead,
they should be set a minimum of 2 V apart (irrespective of the
MI gain setting). This equates to 10% of FSCR (MI gain = 20)
(20% of FSCR, MI gain of 10) apart. They should also be 1 V
away from the 0 A level.
The clamp register limits the CLL clamp to the range 0x0000 to
0x7FFF; any code in excess of this is seen as 0x7FFF. Similarly,
the CLH clamp registers are limited to the range 0x8000 to
0xFFFF (see Table 24).
Clamp Alarm Function ( CLALM )
The CLALM open-drain output flags the user when a clamp
limit has been hit; it can be programmed to be either latched or
unlatched.
Clamp Enable Function (CLEN/ LOAD )
Pin 15 (CLEN) allows the user to disable the clamping function
when powering a device with large DUT capacitance, thus allowing
increased current drive to the device and, therefore, speeding
up the charging time of the load capacitance. CLEN is active high.
This pin can also be configured as LOAD to allow multiple devices
to be synchronized. Note that either CLEN or HW_INH can be
chosen as a LOAD function.
SHORT-CIRCUIT PROTECTION
The AD5560 force amplifier stage has built-in short-circuit
protection per stage as noted in the Specifications section.
When the current clamps are disabled, the user must minimize
the duration of time that the device is left in a short-circuit
condition (for all current ranges).
GUARD AMPLIFIER
A guard amplifier allows the user to force the shield of the
coaxial cable to be driven to the same forced voltage at the
DUT, ensuring minimal voltage drops across the cable to
minimize errors from cable insulation leakage.
The guard amplifier also has an alarm function that flags the
open-drain KELALM pin when the guard output is shorted.
The delay in the alarm flag is 200 μs.
The guard amplifier output (GUARD/SYS_DUTGND, Pin 43)
can also be configured to function as a SYS_DUTGND pin; to
do this, the guard amplifier must be tristated via software (see
DPS Register 2, Table 19).
COMPENSATION CAPACITORS
The force amplifier is capable of driving DUT capacitances up
to 160 μF. Four external compensation capacitor (C
are provided to ensure stability into the maximum load capacit-
ance while ensuring that settling time is optimized. In addition,
five C
Fx
capacitor inputs are provided to switch across the sense
Cx
) inputs

Related parts for EVAL-AD5560EBUZ