SST36VF1602C SST, SST36VF1602C Datasheet - Page 2

no-image

SST36VF1602C

Manufacturer Part Number
SST36VF1602C
Description
(SST36VF1601C / SST36VF1602C) 16 Mbit (x8/x16) Dual-Bank Flash Memory
Manufacturer
SST
Datasheet
Data Sheet
SuperFlash technology provides fixed Erase and Program
times, independent of the number of Erase/Program
cycles that have occurred. Therefore the system software
or hardware does not have to be modified or de-rated as is
necessary with alternative flash technologies, whose
Erase and Program times increase with accumulated
Erase/Program cycles.
To meet high-density, surface-mount requirements, these
devices are offered in 48-ball TFBGA and 48-lead TSOP
packages. See Figures 5 and 6 for pin assignments.
Device Operation
Memory operation functions are initiated using standard
microprocessor write sequences. A command is written by
asserting WE# low while keeping CE# low. The address
bus is latched on the falling edge of WE# or CE#, which-
ever occurs last. The data bus is latched on the rising edge
of WE# or CE#, whichever occurs first.
Auto Low Power Mode
These devices also have the Auto Lower Power mode
which puts them in a near standby mode within 500 ns
after data has been accessed with a valid Read operation.
This reduces the I
While CE# is low, the devices exit Auto Low Power mode
with any address transition or control signal transition used
to initiate another Read cycle, with no access time penalty.
Read Operation
The Read operation is controlled by CE# and OE#; both
have to be low for the system to obtain data from the out-
puts. CE# is used for device selection. When CE# is high,
the chip is deselected and only standby power is con-
sumed. OE# is the output control and is used to gate data
from the output pins. The data bus is in a high impedance
state when either CE# or OE# is high. Refer to the Read
cycle timing diagram for further details (Figure 7).
©2006 Silicon Storage Technology, Inc.
DD
active Read current to 4 µA typically.
2
Program Operation
These devices are programmed on a word-by-word or
byte-by-byte basis depending on the state of the BYTE#
pin. Before programming, one must ensure that the sector
which is being programmed is fully erased.
The Program operation is accomplished in three steps:
See Figures 8 and 9 for WE# and CE# controlled Program
operation timing diagrams and Figure 23 for flowcharts.
During the Program operation, the only valid reads are
Data# Polling and Toggle Bit. During the internal Program
operation, the host is free to perform additional tasks. Any
commands issued during an internal Program operation
are ignored.
Sector- (Block-) Erase Operation
These devices offer both Sector-Erase and Block-Erase
operations. These operations allow the system to erase the
devices on a sector-by-sector (or block-by-block) basis. The
sector architecture is based on a uniform sector size of 2
KWord. The Block-Erase mode is based on a uniform block
size of 32 KWord. The Sector-Erase operation is initiated by
executing a six-byte command sequence with a Sector-
Erase command (30H) and sector address (SA) in the last
bus cycle. The Block-Erase operation is initiated by execut-
ing a six-byte command sequence with Block-Erase com-
mand (50H) and block address (BA) in the last bus cycle.
The sector or block address is latched on the falling edge of
the sixth WE# pulse, while the command (30H or 50H) is
latched on the rising edge of the sixth WE# pulse. The inter-
nal Erase operation begins after the sixth WE# pulse. Any
commands issued during the Sector- or Block-Erase opera-
tion are ignored except Erase-Suspend and Erase-
Resume. See Figures 13 and 14 for timing waveforms.
1. Software Data Protection is initiated using the
2. Address and data are loaded.
3. The internal Program operation is initiated after
three-byte load sequence.
During the Program operation, the addresses are
latched on the falling edge of either CE# or WE#,
whichever occurs last. The data is latched on the
rising edge of either CE# or WE#, whichever
occurs first.
the rising edge of the fourth WE# or CE#, which-
ever occurs first. The Program operation, once ini-
tiated, will be completed typically within 7 µs.
16 Mbit Dual-Bank Flash Memory
SST36VF1601C / SST36VF1602C
S71249-06-000
1/06

Related parts for SST36VF1602C