DPA424 Power Integrations, Inc., DPA424 Datasheet - Page 6

no-image

DPA424

Manufacturer Part Number
DPA424
Description
Highly Integrated DC-DC Converter Ics For Distributed Power Architectures
Manufacturer
Power Integrations, Inc.
Datasheet

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
DPA424G
Manufacturer:
TI
Quantity:
131
Part Number:
DPA424GN
Manufacturer:
POWER
Quantity:
15 000
Part Number:
DPA424GN
Manufacturer:
POWER
Quantity:
20 000
Company:
Part Number:
DPA424GN
Quantity:
4
Company:
Part Number:
DPA424GN
Quantity:
4
Part Number:
DPA424GN-TL
Manufacturer:
POWER
Quantity:
20 000
Company:
Part Number:
DPA424GN-TL
Quantity:
20 000
Part Number:
DPA424PN
Manufacturer:
SITI
Quantity:
32 000
Part Number:
DPA424PN
Manufacturer:
POWER
Quantity:
20 000
Company:
Part Number:
DPA424PN
Quantity:
7 000
Part Number:
DPA424R
Manufacturer:
POWER
Quantity:
15 000
Part Number:
DPA424R
Manufacturer:
POWER
Quantity:
20 000
Part Number:
DPA424R-TL
Manufacturer:
ON
Quantity:
4 300
Part Number:
DPA424R-TL
Manufacturer:
POWER
Quantity:
20 000
Company:
Part Number:
DPA424R-TL
Quantity:
1 500
Pulse Width Modulator and Maximum Duty Cycle
The pulse width modulator implements voltage mode control
by driving the output MOSFET with a duty cycle inversely
proportional to the current into the CONTROL pin that is in
excess of the internal supply current of the chip (see Figure 4).
The excess current is the feedback error signal that appears
across R
with a typical corner frequency of 30 kHz to reduce the effect
of switching noise in the chip supply current generated by the
MOSFET gate driver. The filtered error signal is compared with
the internal oscillator sawtooth waveform to generate the duty
cycle waveform. As the control current increases, the duty cycle
decreases. A clock signal from the oscillator sets a latch that
turns on the output MOSFET. The pulse width modulator resets
the latch, turning off the output MOSFET. Note that a minimum
current must be driven into the CONTROL pin before the duty
cycle begins to change.
The maximum duty cycle, DC
value of 75% (typical). However, by connecting the
LINE-SENSE to the DC input bus through a resistor with
appropriate value, the maximum duty cycle can be made to
decrease from 75% to 33% (typical) as shown in
Figure 7 when input line voltage increases (see line feed
forward with DC
Minimum Duty Cycle and Cycle Skipping
To maintain power supply output regulation, the pulse width
modulator reduces duty cycle as the load at the power supply
output decreases. This reduction in duty cycle is proportional to
the current flowing into the CONTROL pin. As the CONTROL
pin current increases, the duty cycle reduces linearly towards a
minimum value specified as minimum duty cycle, DC
reaching DC
by approximately 2 mA, the pulse width modulator will force
the duty cycle from DC
Figure 4). This feature allows a power supply to operate in a
cycle skipping mode when the load consumes less power than
the DPA-Switch delivers at minimum duty cycle, DC
additional control is needed for the transition between normal
operation and cycle skipping. As the load increases or decreases,
the power supply automatically switches between normal and
cycle skipping mode as necessary.
Cycle skipping may be avoided, if so desired, by connecting a
minimum load at the power supply output such that the duty
cycle remains at a level higher than DC
Error Amplifier
The shunt regulator can also perform the function of an error
amplifier in primary side feedback applications. The shunt
regulator voltage is accurately derived from a temperature-
compensated bandgap reference. The gain of the error amplifier
is set by the CONTROL pin dynamic impedance. The
CONTROL pin clamps external circuit signals to the V
6
DPA423-426
J
5/03
E
(see Figure 2). This signal is filtered by an RC network
MIN
, if CONTROL pin current is increased further
MAX
reduction).
MIN
to zero in a discrete step (refer to
MAX
is set at a default maximum
MIN
at all times.
MIN
C
voltage
MIN
. After
. No
level. The CONTROL pin current in excess of the supply
current is separated by the shunt regulator and flows through R
as a voltage error signal.
On-chip Current Limit with External Programmability
The cycle-by-cycle peak drain current limit circuit uses the
output MOSFET ON-resistance as a sense resistor. A current
limit comparator compares the output MOSFET on-state drain
to source voltage, V
current limit, V
MOSFET is turned off until the start of the next clock cycle. The
current limit comparator threshold voltage is temperature
compensated to minimize the variation of the current limit due
to temperature related changes in R
The default current limit of DPA-Switch is preset internally.
However, with a resistor connected between EXTERNAL
CURRENT LIMIT pin and SOURCE pin, the current limit can
be programmed externally to a lower level between 25% and
100% of the default current limit. Please refer to the graphs in
the Typical Performance Characteristics section for the
selection of the resistor value. By setting current limit low, a
larger DPA-Switch than necessary for the power required can be
used to take advantage of the lower R
smaller heat sinking requirements. With a second resistor
connected between the EXTERNAL CURRENT LIMIT pin
and the DC input bus, the current limit is reduced with increasing
line voltage, allowing a true power limiting operation against
line variation to be implemented in a flyback configuration.
The leading edge blanking circuit inhibits the current limit
comparator for a short time after the output MOSFET is turned
on. The leading edge blanking time has been set so that, if a
power supply is designed properly, current spikes caused by
primary-side capacitance and secondary-side rectifier reverse
recovery time should not cause premature termination of the
switching pulse.
The current limit after the leading edge blanking time is as
shown in Figure 29. To avoid triggering the current limit in
normal operation, the drain current waveform should stay
within the envelope shown.
Line Under-Voltage Detection (UV)
At power up, UV keeps DPA-Switch off until the input line
voltage reaches the under voltage upper threshold. At power
down, UV holds DPA-Switch on until the input voltage falls
below the under voltage lower threshold. A single resistor
connected from the LINE-SENSE pin to the DC input bus sets
UV upper and lower thresholds. To avoid false triggering by
noise, a hysteresis is implemented which sets the UV lower
threshold typically at 94% of the UV upper threshold. If the UV
lower threshold is reached during operation without the power
supply losing regulation and the condition stays longer than
10 µs (typical), the device will turn off and stay off until the UV
upper threshold has been reached again. Then, a soft-start
DS(ON)
DS(ON)
exceeds the threshold voltage and the
with a threshold voltage. At the
DS(ON)
DS(ON)
of the output MOSFET.
for higher efficiency/
E

Related parts for DPA424