ta1360afg TOSHIBA Semiconductor CORPORATION, ta1360afg Datasheet

no-image

ta1360afg

Manufacturer Part Number
ta1360afg
Description
Ycbcr/ypbpr Signal And Sync Processor For Digital Tv, Progressive Scan Tv And Double Scan Tv
Manufacturer
TOSHIBA Semiconductor CORPORATION
Datasheet

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
TA1360AFG
Manufacturer:
TOSHIBA/东芝
Quantity:
20 000
YCbCr/YPbPr Signal and Sync Processor for Digital TV, Progressive Scan TV and Double
Scan TV
(YCbCr/YPbPr) processor and sync processor in a 80-pin QFP
plastic package. The IC is ideal for digital TVs, progressive TVs,
and double scan TVs.
the high performance signal processing circuits. The sync
processor block supports 525I/60, 625I/50, 525P/60, 625P/50,
1125I/50, 1125I/60, 750P/60, (750P/50), PAL100 Hz, NTSC120 Hz,
and SVGA/60(VESA).
control various functions via the bus line.
Features
Luminance Block
Color difference Block
Text Block
Synchronization Block
The TA1360AFG integrates an analog component signal
The luminance block and the color difference block incorporate
The TA1360AFG incorporates the I
Black stretch circuit and DC restoration rate correction circuit
Dynamic γ correction circuit (gray scale correction)
SRT (LTI)
Y group delay correction (shoot balance correction)
High-bright color circuit
Color detail enhancer (CDE)
White pulse limiter (WPL)
VSM output
Flesh color correction
Dynamic Y/C correction circuit
Color SRT (CTI)
Color γ circuit
Green stretch
Blue stretch
OSD blending SW
ACB (only black level)
Two analog RGB inputs
Horizontal sync (15.75 k, 28.125 k, 31.5 k, 33.75 k, 37.9 k, 45 kHz)
Vertical sync (525I/P, 625I/P, 750P, 1125I/P, PAL 100 Hz/NTSC 120 Hz
2- and 3-level sync separator circuit
HD/VD input (positive and negative polarities)
Copy guard
Vertical blanking
TOSHIBA Bipolar Linear Integrated Circuit Silicon Monolithic
2
C bus. The device can
TA1360AFG
1
Weight: 1.6 g (typ.)
TA1360AFG
2005-08-18

Related parts for ta1360afg

ta1360afg Summary of contents

Page 1

... TOSHIBA Bipolar Linear Integrated Circuit Silicon Monolithic YCbCr/YPbPr Signal and Sync Processor for Digital TV, Progressive Scan TV and Double Scan TV The TA1360AFG integrates an analog component signal (YCbCr/YPbPr) processor and sync processor in a 80-pin QFP plastic package. The IC is ideal for digital TVs, progressive TVs, and double scan TVs ...

Page 2

... CP2 MATRIX CLAMP DRIVE MIXER SW/ BLUE BACK BLUE STRETCH CP2 S/H CUT OFF RGB CLAMP BRIGHTNESS RGB CONTRAST TA1360AFG CLAMP Y BLACK BLACK PEAK 70 BPH FILTER STRETCH DETECT BLACK LEVEL CORECTION DARK DARK AREA 71 DET DET FILTER DYNAMIC γ LIGHT ...

Page 3

... NC 21 ANALOG OSD DAC2 (ACB PULSE) 24 ANALOG TA1360AFG TA1360AFG LIGHT AREA 64 DET FILTER COLOR LIMITER 58 VSM FILTER 57 ...

Page 4

... CC ⎯ ⎯ ⎯ 4 TA1360AFG Input Signal/Output Signal 0 Internal 1 1 VSM Mute 2 OSD, VSM Mute 0 Internal 1 Analog RGB, VSM Mute 10 ⎯ kΩ ...

Page 5

... IRE: 0.7 Vp-p (not including 1 kΩ sync kΩ 10 ⎯ ACB PULSE 500 Ω kΩ 100 IRE: 0.7 Vp-p (not including 1 kΩ sync kΩ 10 ⎯ 5 TA1360AFG Input Signal/Output Signal UNI-COLOR = max SUB-CONT = Cent 0.7 Vp-p ⎯ ⎯ ⎯ ⎯ ⎯ 2005-08-18 ...

Page 6

... ACK ⎯ 5 kΩ SCL 30 ⎯ ⎯ 45 500 Ω 200 Ω ⎯ 6 TA1360AFG Input Signal/Output Signal 45 ⎯ ⎯ 45 ⎯ ⎯ ⎯ SYNC OUT VP output Start phase V-BLK input current: 780 µ ⎯ ...

Page 7

... kΩ kΩ kΩ 10 kΩ 38 ⎯ 7 TA1360AFG Input Signal/Output Signal ⎯ max H-AFC threshold : 5.3 V BLK threshold : 2 BUS control (horizontal frequency) : output voltage value 28 k/15 kHz : kHz : kHz : ...

Page 8

... VCO 44 38 ⎯ ⎯ 200 Ω 38 ⎯ kΩ kΩ ⎯ kΩ TA1360AFG Input Signal/Output Signal DC ⎯ ⎯ ⎯ BPP 4 Threshold : 0. Threshold : 0. ⎯ Threshold : 0. Threshold : 0 ...

Page 9

... This pin is not used Connect to GND. Interface Circuit 1 kΩ kΩ ⎯ kΩ 55 (pin 38 ⎯ 57 200 Ω kΩ 58 ⎯ 9 TA1360AFG Input Signal/Output Signal White 100 p ⎯ DEF V or DEF GND CC ⎯ ⎯ 2005-08-18 ...

Page 10

... TA1360AFG Input Signal/Output Signal 700 mVp-p700 mVp-p at 100% color bar for 700 mVp-p at 100% color bar for Vp-p (including sync) at 100% color bar ...

Page 11

... Interface Circuit 200 Ω kΩ kΩ ⎯ kΩ kΩ 1 kΩ 65 ⎯ ⎯ See pin 57 kΩ 5 kΩ TA1360AFG Input Signal/Output Signal ⎯ ⎯ ⎯ ⎯ ⎯ DC 2005-08-18 ...

Page 12

... Pin Pin Name Function No. High-speed halftone switch for internal RGB signal /P-MUTE/BLK M Enables picture mute and blanking. Interface Circuit 16 300 Ω Half Tone 2 4 P-Mute TA1360AFG Input Signal/Output Signal : Internal : Blanking 2005-08-18 ...

Page 13

... VSM GAIN DC REST RATE APL VS BSP B.L.C. D-ABL GAIN BL STRETCH POINT ABL GAIN STATIC γ GAIN-1 Y/C-DL1 BS-CHAR2 Y/C-DL2 YUV-IN H-OUT VP-OUT RGB-IN 13 TA1360AFG D1 D0 Preset SYNC-SW H-FREQ2 1000 0000 CLP-PHS 1000 0000 TEST 1000 0000 1000 0000 1000 0000 1000 ...

Page 14

... Outputs H/C-SYNC from pin 34, and ACB reference pulse from pin 23 when TEST is 01. Do not set TEST to 10/11 for that is shipment TEST Mode. Description / INPUT-2 (Y2 TA1360AFG Preset Value 33.75 kHz 41% INPUT-1 OPEN ON HD/VD CENTER 1.1-µs delay ACB ON (10 IRE) Internal Mode ± ...

Page 15

... Y/Pb/Pr: ITU-R BT 709 (1125/60/2:1) Y-out gamma control: Y-outγ 0: OFF 1: ON Drive gain 1/2; DRIVE GAIN1/2 0000000: −5dB 1111111: +3dB DR-R Switches RGB drive gain base. (See Appendix 5.) DR-B/G Description 15 TA1360AFG Preset Value 32 H 1281 H CENTER, OFF P-MUTE 1 min CENTER ON C-MUTE ±0 deg CENTER ...

Page 16

... DC restoration rate correction point: DC REST POINT 000: 0% 111: 49% DC restoration correction rate: DC REST RATE 000: 100% 111: 135% (70%) DC restoration rate correction limit point: DC REST LIMIT 00: 67% 01: 77% 10: 80% 11: 80% Description 16 TA1360AFG Preset Value CENTER CENTER min CENTER min CENTER 4.5 MHz OFF OFF 1 ...

Page 17

... When 00~10 is set, light area static Yγ and light dynamic Yγ according to light area is operated. OSD brightness: OSD BRIGHT 00: 5 IRE 01: 0 IRE 10: −5 IRE 11: −10 IRE OSD contrast: OSD-CONTRAST 00: min (−9.5dB) 11: max (0dB) Description 17 TA1360AFG Preset Value CENTER 0 IRE OFF 3 IRE ON CENTER min CENTER ...

Page 18

... Y group delay correction; shoot balance correction. Y-GROUP DELAY 0000: Pre-shoot gain is lowered. (Overshoot gain is raised.) CORRECTION 1111: Overshoot gain is lowered. (Pre-shoot gain is raised.) White peak blue gain. WP BLUE GAIN 000: min (+3dB) 111: max (+10dB) Description 18 TA1360AFG Preset Value −10 ns min CENTER OFF CENTER min 2005-08-18 ...

Page 19

... V-BPP Example of Format/V (H)-Frequency Start Phase Stop Phase 1100 H 730 H 600 H V-BLK P. (C.BLK P.) 545 H +20 H 500 H 290 H 240 H ⎯ ⎯ 19 TA1360AFG 28.125 31.5 33.75 37.9 15.75 31.5 33.75 45 1125P/30 Hz (33.75 kHz) 750P/60 Hz (45 kHz) (750P/50Hz(37.5 kHz)) 625P/50 Hz (31.5 kHz) SVGA/60 Hz(37.9 kHz) 1125I/50 Hz (28.125 kHz) 1125I/60 Hz (33.75 kHz) 525P/60 Hz (31.5 kHz) PAL/SECAM/50 Hz (15.625 kHz), 100 Hz (31 ...

Page 20

... Ys1/Ys2 blends OSD-IN and main halftone signal P-Mute > Analog RGB-IN Full-screen-mute process is executed on main signal and analog RGB-IN by BUS. Insert OSD-IN by Ys1/Ys2. P-Mute > Analog RGB-IN P-Mute and halftone process is executed on the main signal by pin Y Analog RGB-IN is inserted by Ys3, and OSD-IN by Ys1/Ys2. P-Mute > Analog RGB-IN 20 TA1360AFG . 2005-08-18 ...

Page 21

... NG (no signal (signal detected) RGB-IN Detects signal when all three inputs are AC signals. Small signals or signals like DC voltage are not detected. Detects SYNC-IN self-check; detects input of pin 53. SYNC- (no signal (signal detected) Drive Gain1 Drive Gain2 Function 21 TA1360AFG 2005-08-18 ...

Page 22

... SDA SCL SDA must not be changed Acknowledgement SDA from transmitter SDA from receiver SCL from master Bus Stop condition SDA may be changed Clock pulse for acknowledgement 22 TA1360AFG A0 W/R 0 0/1 High impedance at bit 9 Low impedance only at bit 9 2005-08-18 ...

Page 23

... LOW ⎯ t 4.0 HIGH ⎯ t 4.7 SU;STA ⎯ t 350 HD;DAT ⎯ t 250 SU;DAT ⎯ t 4.0 SU;STO ⎯ t 4.7 BUF 23 TA1360AFG A P Transmit data bit MSB Max Unit 1.0 V Vcc V 0.4 V µ 100 kHz ⎯ µs ⎯ µs ⎯ µs ⎯ µs ⎯ ...

Page 24

... When using in −25 to 70°C of operating temperature, set the IC’s power supply voltage (pins 16, 45, 75) to 8.8 V (±0.3 V). When designing a set, make sure that the IC can radiate heat because the TA1360AFG has low thermal capacity. Note that the power dissipation varies greatly according to conditions of a board. ...

Page 25

... Horizontal output 6.0 V (typ.) POR release voltage (BUS operation) 4.6 V (typ.) Logic operation 1.3 V (typ.) Figure B Timing chart that indicates the timing from power-on till horizontal output. ( C°) /RGB DEF/DAC TA1360AFG CC t 2005-08-18 ...

Page 26

... H-AFC H-BLK OSD VSM MUTE BLK P-MUTE HALF TONE . opr V CC Test Symbol Min Typ. Max Circuit ⎯ I 19.2 24.0 28.2 CC1 ⎯ I 48.8 61.0 67.8 CC2 ⎯ I 21.3 25.0 29.4 CC3 ⎯ I 36.8 46.0 51.1 CC4 26 TA1360AFG Min Typ. Max Unit 8.7 9.0 9.3 V 8.5 8.8 9.1 1.8 2.0 2.2 ⎯ ⎯ 1.0 Vp-p ⎯ ⎯ 0.7 ⎯ MHz ⎯ MHz 2.0 5 0.9 1.0 1.1 Vp-p 4.2 5 ...

Page 27

... V 1.8 2.1 2.4 53 ⎯ V 7.5 7.7 7.9 57 ⎯ V 6.65 6.9 7.15 58 ⎯ V 4.7 5.0 5.3 60 ⎯ V 4.7 5.0 5.3 61 ⎯ V 4.7 5.0 5.3 63 ⎯ ⎯ V 0.09 0.15 64 ⎯ V 4.7 5.0 5.3 66 ⎯ V 4.7 5.0 5.3 67 ⎯ V 4.7 5.0 5.3 68 ⎯ V 5.5 5.8 6.1 70 ⎯ ⎯ V 0.09 0.15 71 ⎯ V 4.8 5.0 5.2 74 ⎯ V 4.1 4.3 4.5 77 ⎯ V 6.1 6.35 6.6 78 ⎯ ⎯ V 0.1 0.2 79 ⎯ ⎯ V 0.1 0 TA1360AFG Unit V 2005-08-18 ...

Page 28

... ADT 100 ⎯ ADT (Note P17) 135 ⎯ ADT 65 ⎯ V DT0 (Note P18) ⎯ V DT1 ⎯ P DTL60 ⎯ P DTL75 (Note P19) ⎯ P DTL87 ⎯ P DTL100 28 TA1360AFG Min Typ. Max Unit 0.7 1.0 1.5 Vp-p − 2.4 2.8 3 IRE IRE ...

Page 29

... Pins SR2 ⎯ SR580 ⎯ (Note P25) ⎯ ⎯ ⎯ ⎯ ⎯ (Note P26) ⎯ ⎯ AMIN ⎯ BMIN (Note P27) ⎯ AMAX ⎯ BMAX 29 TA1360AFG Min Typ. Max Unit 10.5 13 9.5 12 MHz 5 7.2 7.8 3.5 4.5 6.3 ⎯ 0.01 0. 17.5 19 − 4 − 0.6 2.5 15 17.5 19 − ...

Page 30

... Y detail control range G YDCEN G Test Test Condition Circuit ⎯ CDE00 ⎯ CDE01 (Note P28) ⎯ CDE10 ⎯ CDE11 ⎯ ⎯ ⎯ ⎯ (Note P29) ⎯ YDMIN 30 TA1360AFG Min Typ. Max Unit MHz ...

Page 31

... GC BDY2 (Note S02) ⎯ GC RDY1 ⎯ GC RDY2 ⎯ G Y00 ⎯ G Y01 ⎯ G CBB ⎯ G PBB (Note S03) ⎯ G PBR ⎯ G CRR ⎯ G PRB ⎯ G PRR 31 TA1360AFG Min Typ. Max Unit 0.7 0.9 1.0 Vp-p 0.7 0.9 1 − 37 − 33 − 29 ° − 36 − 32 − 28 3.6 4.5 5.4 4.6 5.8 7.0 MHz 3.6 4.5 5.4 4.6 5 ...

Page 32

... GrC01 Green stretch GrC10 GrC11 GrD01 GrD10 GrD11 GrE01 GrE10 GrE11 Test Test Condition Min Circuit ⎯ 0.98 ⎯ 0.95 ⎯ 0.93 ⎯ 1.01 ⎯ 1.05 ⎯ 1.12 ⎯ 1.10 ⎯ (Note S04) 1.23 ⎯ 1.35 ⎯ 1.09 ⎯ 1.21 ⎯ 1.32 ⎯ 0.98 ⎯ 0.95 ⎯ 0.93 32 TA1360AFG Typ. Max Unit 1 1.02 1 1.05 1 1.07 1.05 1.10 1.1 1.15 1.19 1.26 1.14 1.18 times 1.27 1.31 1.42 1.49 1.13 1.17 1.25 1.29 1.39 1.46 1 1.02 1 1.05 1 1.07 2005-08-18 ...

Page 33

... GY ⎯ GHT BY ⎯ V γ1 ⎯ V γ2 (Note A04) ⎯ V γ3 ⎯ ∆ γ ⎯ CLT 0 (Note A05) ⎯ CLT 1 ⎯ HBC (Note A06 TA1360AFG Min Typ. Max Unit 14.5 16.0 17.5 dB 3.0 4.0 5.0 dB − 35 − 22 − 17 109 111.5 114 ° 98.5 101 103 0.86 0.90 0.94 times ...

Page 34

... VB ⎯ ⎯ ⎯ ⎯ ⎯ (Note T09) ⎯ td OFF ⎯ ∆ v su+ ⎯ ⎯ ∆ vsu− ⎯ CUT + ⎯ CUT − ⎯ 34 TA1360AFG Min Typ. Max Unit 3.08 3.45 3.90 times 3.08 3.45 3.90 3.08 3.45 3.90 0.94 1.00 1.06 0.94 1.00 1.06 ⎯ ⎯ MHz 30 60 ⎯ ⎯ ...

Page 35

... BB R ⎯ ⎯ ⎯ ⎯ Zin (Note T11) ⎯ 1 (Note T12) ⎯ 2 ⎯ P1 ⎯ P2 ⎯ P3 ⎯ P4 (Note T13) ⎯ P5 ⎯ P6 ⎯ P7 ⎯ TA1360AFG Min Typ. Max Unit 2.05 2.30 2.55 V 2.05 2.30 2.55 2.05 2.30 2.55 ⎯ 0 150 mV 2.5 3.0 3.5 − 5.5 − 5.0 − 4.5 2.5 3.0 3.5 − 5.5 − 5.0 − 4.5 2.5 3.0 3.5 − 5.5 − 5.0 − ...

Page 36

... T18) ⎯ ACB2R ⎯ ⎯ ACB2B ⎯ ACB3R ⎯ ⎯ ACB3B ⎯ ⎯ (Note T19 ⎯ TA1360AFG Min Typ. Max Unit − 0.06 − 0.02 0.00 − 0.17 − 0.12 − 0.07 − 0.34 − 0.29 − 0.24 − 0.52 − 0.47 − 0.42 V − 0.68 − 0.63 − 0.59 − 0.85 − 0.80 − ...

Page 37

... FYS ⎯ RYS ⎯ RYS ⎯ 1 (Note T27) ⎯ 2 ⎯ OSDR ⎯ (Note T28) OSDG ⎯ OSDB ⎯ ⎯ ⎯ ⎯ OSDR ⎯ At − 3dB OSDG ⎯ OSDB 37 TA1360AFG Min Typ. Max Unit 3.00 3.30 3.60 V − 0.50 − 0.30 − 0.10 3.03 3.40 3.83 times 3.03 3.40 3.83 3.03 3.40 3.83 0.94 1.00 1.06 ⎯ 0.94 1.00 1.06 ⎯ ...

Page 38

... Pin 80 ⎯ Pin 1 ⎯ RYS1 ⎯ RYS1 ⎯ RYS1 ⎯ FYS1 ⎯ RYS1 ⎯ RYS1 (Note T33) ⎯ RYS2 ⎯ RYS2 ⎯ RYS2 ⎯ FYS2 ⎯ RYS2 ⎯ RYS2 ⎯ 1 ⎯ 2 (Note T34) ⎯ 3 ⎯ TA1360AFG Min Typ. Max Unit 0.80 1.20 1.50 Vp-p 0.80 1.20 1.50 0.80 1.20 1.50 2.45 2.70 2.95 Vp-p 2.45 2.70 2.95 2.45 2.70 2.95 1.30 1.45 1.60 V 1.30 1.45 1.60 1.30 1.45 1.60 0.58 0.64 0.71 ...

Page 39

... T36) ⎯ min ⎯ max ⎯ BL γ 1 ⎯ BL γ 2 (Note T37) ⎯ BL γ 3 ⎯ BL γ 4 ⎯ ⎯ (Note T38) ⎯ 39 TA1360AFG Min Typ. Max Unit − 7 − 6 − 5 − 7 − 6 − 5 − 7 − 6 − 5 − 4 − 3 − 2 − 4 − 3 − 2 − ...

Page 40

... HBP s11b ⎯ V (Note HA10) thFBP ⎯ V Pin 42: Monitor, V voltage VCO CC ⎯ V Pin 37: Monitor, V voltage HON CC ⎯ V Pin 37: Monitor, V voltage HOFF CC ⎯ (Note HB01) ⎯ TA1360AFG Min Typ. Max Unit µ s 0.55 0.65 0.75 µ s 0.58 0.68 0.78 ⎯ 0.5 2 ⎯ 99.5 98 47.5 52.5 57 ...

Page 41

... TEST = (00), DAC1 = (1) 1L ⎯ TEST = (00), DAC2 = (1) 2H ⎯ TEST = (00), DAC2 = (0) 2L ⎯ VP (Note V01) W ⎯ VPt0 ⎯ VPt1 ⎯ VPt2 ⎯ ⎯ VPt3 ⎯ VPt4 ⎯ VPt5 ⎯ VPt6 ⎯ (Note V02) VPULL 41 TA1360AFG Min Typ. Max Unit 15.59 15.75 15.91 27.90 28.125 28.35 31.19 31.5 31.82 kHz 33.41 33.75 34.09 37.60 37.9 38.40 44.52 45.0 45.48 14.58 14.88 15.18 16.52 16.85 17.18 25.91 26.44 26 ...

Page 42

... TA1360AFG Min Typ. Max Unit 1099.5 1100.5 1101 729.5 730.5 731.5 49.5 50.5 51.5 599.5 600.5 601.5 H 49.5 50.5 51.5 544.5 545 ...

Page 43

... Pin 35 input current 43 TA1360AFG Min Typ. Max Unit ...

Page 44

... Set black stretch point 1 to OFF (000), and measure #74 amplitude V 4. Set black stretch point 1 to 001 (black stretch ON), and measure #74 amplitude V 5. Calculate GBS using a following equation. GBS = 20 × V ± 3°C) Test Method (Test condition #74 ÷ [dB TA1360AFG . B 2005-08-18 ...

Page 45

... shown in the figure below. Also BST1 BST2 using following equations. BST2 [V] − V [V] 0 [V] − V [V]) ÷ × 100 (IRE) BST1 74 Z [V] − V [V]) ÷ × 100 (IRE) BST2 BST2 S2 74 TA1360AFG S1 #68 2005-08-18 ...

Page 46

... V P BS2 11 0.7 V p-p 0.3 V p-p #68 waveform (linearity V ± 3 ° C) Test Method (Test condition (APL 0%), and shown in the figure below. (Monitor input 00 ) × 100 /V P12 ) × 100 /V P12 LINEARITY APL 100% APL 0% TA1360AFG + 1.0 V (APL ∆ V *** #12 (R OUT) 2005-08-18 ...

Page 47

... BSC2 and P using following equation. BSC1 BSC2 , BSC3 BSC4 BSC5 and P BSC6. [V] − V [V]) ÷ 1.0 × 100 [(IRE BSC2 #68 12 V68 + 0 BSC1 S4 Black stretch characteristic switch ON TA1360AFG + 0.7 V, and adjust unicolor so 68 and V ) and calculate BSC6 2005-08-18 ...

Page 48

... V ± 3 ° C) Test Method (Test condition SW70 A PS2 µ A mmeter and and V (DV ), between V and − TA1360AFG . 11 (DV ), and between 2005-08-18 ...

Page 49

... D.ABL sensitivity is set to minimum (00) and maximum (11) can be plotted as figure shown below. 3. Measure gradients SDAMIN and SDAMAX using the figure below. = ∆ Y/ ∆ DAMIN # V ± 3 ° C) Test Method (Test condition ∆ Y/ ∆ X DAMAX 10% ∆ Y 100% 10% ∆ X TA1360AFG #78 2005-08-18 ...

Page 50

... Set black level correction [18 [04], determine DC change VBLC [V], and calculate BLC [V] using the following equation BLC = (VBLC/VB)] × 100 [(IRE)] Black level correction OFF Black level correction V ± 3 ° C) Test Method (Test condition #12 VBLC VB TA1360AFG 2005-08-18 ...

Page 51

... V and plot voltage change of #12 picture period. Take 0 for V [ pin voltage of pin 68) 68 [V] + 0.7 V and plot voltage change of #12 picture period. [ using the following equation. DGP [V])/0.7 [V] × 100 68 ON OFF + 0.7V VDGP (100 IRE) TA1360AFG 68 #68 voltage [V] 2005-08-18 ...

Page 52

... PS1 is VDGP [V], and calculate the following equations. VDDGMAX − VDDGMIN = A VDDGMIN − VDDGV GDDGMAX = 20 og #12 voltage [V] VDDGMAX VDDGMIN VDDGV V ± 3 ° C) Test Method (Test condition [V [B/(B-A)] [dB] OFF ON VDDGMAX − VDDGMIN = A VDDGMIN − VDDGV = B 68 #68 voltage [ VDGP (100IRE) TA1360AFG 2005-08-18 ...

Page 53

... V ± 3 ° C) Test Method (Test condition [B/(B - A)] [dB] #12 voltage [V] OFF ON VSGMAX − VSOFF2 = A #68 voltage [ VDGP (100IRE) [(VSGMIN − VSGOFF1)/(VSGOFF2 − VSGOFF1)] [dB] l #12 voltage [V] OFF VSGOFF2 − VSGOFF1 ON VSGMIN − VSGOFF1 #68 voltage [ VDGP (100IRE) TA1360AFG 2005-08-18 ...

Page 54

... V [V] + 0.7 [V], and plot the voltage change of #12 picture period. Take 0 for pin voltage of pin 68) 68 [V] + 0.7 [V], and plot the voltage change of #12 picture period. [ [V])/0.7 [V] × 100 (IRE OFF #68 voltage + 0 VLGP (100IRE) TA1360AFG 2005-08-18 ...

Page 55

... VLDGMAX [V] using the following equations. VLDGMAX − VLDGOFF2 = A VLDGOFF2 − VLDGOFF1 = B GLDG = 20 × og #12 voltage [V] VLDGMAX VLDGOFF2 VLDGOFF1 V ± 3 ° C) Test Method (Test condition [B/(B − A)] l VLDGMAX − VLDGOFF2 = A ON VLDGOFF2 − VLDGOFF1 = B OFF #68 voltage V VLGP + 0 (100IRE) TA1360AFG 2005-08-18 ...

Page 56

... Test Method (Test condition [B/(B − A)] [dB] l #12 voltage [V] VLSGMAX − VLDGOFF2 = A ON VLSGOFF2 − VLSGOFF1 = B OFF #68 voltage [V] V VLGP + 0 (100IRE) [B/(B − C)] [dB] l #12 voltage [V] VLSGMIN − VLDGOFF2 = C ON VLSGOFF2 − VLSGOFF1 = B OFF #68 voltage [ 0.7 V VLGP (100IRE) TA1360AFG 2005-08-18 ...

Page 57

... OPEN 1. Input the signal whose picture period amplitude is 0. #68 as shown in the figure below. 2. Measure #71 pin voltage DAMIN, DACEN, and DAMAX [V] when dark area detection sensitivity [1D] is set to MIN [00], CEN [04] and MAX [07 V ± 3 ° C) Test Method (Test condition #68 0.18 V #71 DAMIN ・ CEN ・ MAX [V] TA1360AFG 2005-08-18 ...

Page 58

... V, DC restoration correction 68 . DT4 , and ADT using following equations. 135 65 [V] − V [V]) ÷ 0.1 [V] DT2 DT1 [V] − V [V]) ÷ 0.1 [V] DT3 DT1 [V] − V [V]) ÷ 0.1 [V]) DT2 DT4 Picture period #12 waveform TA1360AFG + 0 [V] and V DT2 DT3 V DT1 V V DT2 DT3 V DT4 2005-08-18 ...

Page 59

... V, and adjust unicolor so that DC level is + 1.0. 68 using the following equations. DT1 − V )/1 V] × 100% 74 − V )/1 V] × 100 restoration rate correction point 000 DC restoration rate correction point 111 DC restoration correction rate 000 V SP1 #74 TA1360AFG . Plot relation between # Plot relation between #74 68 2005-08-18 ...

Page 60

... Test Method (Test condition and P using following equations. DTL60 DTL75 DTL87 DTL100 − V )/1.0] × 100% L60 74 − V )/1.0] × 100% L75 74 − V )/1.0] × 100% L87 74 − V )/1.0] × 100% L100 L60 L100 V V L75 L87 TA1360AFG 100% (00) 87% (01) 73% (10) 60% (11) #74 2005-08-18 ...

Page 61

... Vp-p) to TPA as shown in the figure below. 2. Set sharpness [09] to MIN [00] and MAX [80]. Monitor #43, measure DC level VRDCMIN and VRDCMAX [V]. Calculate VRDC [V] using the following equation. VRDC = VRDCMIN − VRDCMAX [ V ± 3 ° C) Test Method (Test condition #68 0.2 V #12 VRDC * TA1360AFG 2005-08-18 ...

Page 62

... AP00 using the following equations. , measure V AP01 . MIN01 , measure V AP10 . MIN10 , measure V AP11 . MIN11 ÷ [dB] MAX*** 100 ÷ [dB] MIN*** 100 TA1360AFG . 100 , measure the amplitude V , MAX00 , MIN00 /V and MAX01 MIN01 /V and MAX10 MIN10 /V and MAX11 MIN11 2005-08-18 ...

Page 63

... Note: When a spectrum analyzer is used, measure gain for low frequency V ± 3 ° C) Test Method (Test condition measure #12 amplitude V AP00 using the following equations. , measure V AP01 , measure V AP10 , measure V AP11 ÷ [dB] CEN*** 100 TA1360AFG , CEN00 and calculate CEN01 and calculate CEN10 and calculate CEN11 2005-08-18 ...

Page 64

... SRTMAX01 SRTMAX01 /V and SRTMIN10 SRTMAX10 SRTMAX10 /V and SRTMIN11 SRTMAX11 SRTMAX11 l [ ((V /T )/(V /T SRTMAX00 SRTMAX00 SRTMIN00 SRTMIN00 l [(V /T )/(V /T SRTMAX01 SRTMAX01 SRTMIN01 SRTMIN01 l [(V /T )/(V /T SRTMAX10 SRTMAX10 SRTMIN10 SRTMIN10 l [(V /T )/(V /T SRTMAX11 SRTMAX11 SRTMIN11 SRTMIN11 T *** 20% V *** 20% TA1360AFG . )) )] )] )] 100% 2005-08-18 ...

Page 65

... V . Set input amplitude to 0.7 Vp-p, and VSM gain to OFF (000). Measure 111 . l (V /0.7) [dB] 000 l (V /0.02) [dB] 001 l (V /0.02) [dB] 010 l (V /0.02) [dB] 011 l (V /0.02) [dB] 100 l (V /0.02) [dB] 101 l (V /0.02) [dB] 110 l (V /0.02) [dB] 111 to TPA. VSM and V [Vp-p] as shown in the figure below TA1360AFG , 001 2005-08-18 ...

Page 66

... Determine YDLA, YDLB, and YDLC using the following equations. YDLA = YDL01 − YDL00 YDLB = YDL10 − YDL00 YDLC = YDL11 − YDL00 V ± 3 ° C) Test Method (Test condition pulse Approximately 0.7 Vp-p #68 50% YDL00 YDL01 YDL10 YDL11 TA1360AFG #12 50% 2005-08-18 ...

Page 67

... Note: Sine wave input starts and ends within the picture period such as a burst signal. The wave is not continuous V ± 3 ° C) Test Method (Test condition Signal Signal B . BMIN . BMAX [dB] AMIN AMIN A Signal /S ) [dB] C BMIN [dB] AMAX [dB] BMAX B S AMAX Signal D TA1360AFG BMIN S BMAX 2005-08-18 ...

Page 68

... When APACON peak frequency is 13.5 M (00), 9.5 M (01), 6.4 M (10), and 4.5 M (11), calculate and G CDE01 CDE10 BLK picture period period V ± 3 ° C) Test Method (Test condition − G CDEMIN00 respectively using above equation. CDE11 Output gain [dB] 0.2 Vp-p 0dB TA1360AFG . CDEMIN . CDEMAX , CDE00 max min Input frequency [MHz] 2005-08-18 ...

Page 69

... Set low frequency area to 0dB, and measure each peak level G 5. Set Y detail control to center (1000), and measure peak level G 6. Set Y detail control to minimum (0000), and measure peak level V ± 3 ° C) Test Method (Test condition YDMAX . YDCEN . YDMIN TA1360AFG 2005-08-18 ...

Page 70

... Calculate G and SR01CEN G . SR01MAX ± 3 ° C) Test Method (Test condition × og B00CEN l (SB00MAX/SSB00MIN). and G . SB01CEN SB01MAX l (SB00MAX/SSB00MIN). T *** Gradient S *** = V *** /T *** 20% 20% TA1360AFG l (SB00CEN/SB00MIN) and , and S as R00CEN R00MAX l (SB00CEN/SB00MIN) and 100% V *** 2005-08-18 ...

Page 71

... Calculate the following equations × BDY1 7. Input 100-kHz sync signal to TP5, and repeat the procedure above. Calculate the following equations × RDY1 V ± 3 ° × (VBDY1/VBDY0), GC (VBDY2/VBDY0) BDY2 = 20 × (VRDY1/VRDY0), GC (VRDY2/VBDY0) RDY2 TA1360AFG 2005-08-18 ...

Page 72

... Calculate the following equations × Y00 = 20 × CBB = 20 × PBR = 20 × CRR = 20 × PRR V ± 3 ° × (VY00/0.2), G (VY01/0.2) Y01 = 20 × (VB00/0.2), G (VBB01/0.2), PBB (VBR01/0. × (VR00/02), G (VRB01/0.2), PRB (VRR01/0.2) TA1360AFG 2005-08-18 ...

Page 73

... GrC11 = C00 C00 D10 D11 GrD10 = GrD11 = D00 D00 E10 E11 GrE10 = GrE11= E00 E00 0.05 Vp-p ±0 Vp-p −0.05 Vp-p −0.087 Vp-p −0.1 Vp-p ±0 Vp-p −0.07 Vp-p −0.122 Vp-p −0.122 Vp-p −0.14 Vp 150° 210° 240° 270° 180° TA1360AFG 2005-08-18 ...

Page 74

... V uCYMAX respectively. 4. Determine unicolor amplitude ratio between maximum and minimum in decibels. (∆V ) uCY 5. Repeat the steps above with the following pins: Input (picture period amplitude 0.2 Vp-p) from pin 67, and measure pin 14. TA1360AFG , V , and V uCYCNT uCYMIN 2005-08-18 ...

Page 75

... Apply 1 pin 79 from external power supply. 4. Measure pin 12 output picture period amplitude vHTBRY. = vHTBRY/vHTARY 5. Calculate GHT RY 6. Repeat the steps above and measure pin 13. = vHTBGY/vHTAGY Calculate GHT GY 7. Repeat the steps above and measure pin 67. Calculate GHT vHTBBY/vHTABY. TA1360AFG 、 and V CCYCNT CCYMIN = BY 2005-08-18 ...

Page 76

... Measure #12 output signal amplitude levels and chart a characteristic diagram. Determine Vγ where γ starts applying and gradient ∆ at γ ON when linearity at γ 3. OFF is 1. #12 output amplitude γOFF Vγ TA1360AFG γON #66 input amplitude 2005-08-18 ...

Page 77

... Input signal 2 (picture period amplitude = 0.28 Vp-p) from pin 67 Adjust color so that pin 14 output picture period amplitude is 1.2 Vp-p. 3. Set subaddress (0B) data to (80) and measure pin 14 output signal picture period amplitude (1.2 − Calculate the following equation. HBC 1 TA1360AFG )/1.2 14 2005-08-18 ...

Page 78

... Vp-p) from pin 68 /0.2 G /0 MHz, picture period amplitude = 0.7 Vp-p) from pin 68. 0 fY1 and G against each input with f fY15 fY30 TA1360AFG , V , and YDC1 = MHz. Calculate the 0 . and V . YDC15 YDC30 2005-08-18 ...

Page 79

... V in decibels (∆V uMAX uMIN , V , and V respectively. brMAX brCNT brMIN . = −20 × og [2.3/(0.2 × n14 −20 × og [2.3/(0.2 × n13 −20 × og [2.3/(0.2 × n12 100 kHz, picture period amplitude 0.2 Vp-p) from pin 68 v14B/v14A HT1 = v414C/v14A HT2 TA1360AFG ) u ) wps2 . bps 2005-08-18 ...

Page 80

... Apply signal shown in the figure (A) below to pin 39 (BLK input), and measure td td OFF (A) Appling signal to pin 39 (B) Output signal from pins 12, 13, and 14 80 Test Method of output signals from pins 12, 13, and 14 shown in the figure (B) below. 63.5 µ TA1360AFG and ON td OFF 2005-08-18 ...

Page 81

... B3− in decibels when subaddress (0E) data is set to (81), and subaddress (0D) data G3− in decibels when subaddress (0D) data is set to (81), and subaddress (0E) data R2− = 0.2 V/I (Ω) in53 in − Ammeter (µA) TA1360AFG and G1+ and DR in B1+ B1− and DR in G2+ G2− B2+ R1+ B3+ G3+ ...

Page 82

... Vp-p) from pin 68 −20 × (vACL2/vACL1) = −20 × (vACL3/vACL1) = VABL2 − VABL1 ABL = VABL6 − VABL1 P5 = VABL3 − VABL1 ABL = VABL7 − VABL1 P6 = VABL4 − VABL1 ABL = VABL8 − VABL1 P7 = VABL5 − VABL1 ABL = VABL9 − VABL1 P8 TA1360AFG 2005-08-18 ...

Page 83

... V 83 Test Method = VABL11 − VABL10 = VABL12 − VABL10 = VABL13 − VABL10 = VABL14 − VABL10 = VABL15 − VABL10 = VABL16 − VABL10 = VABL17 − VABL10 = VABL18 − VABL10 , V 12R 13R , V , and V . 12G 13G 14G , V , and V . 12B 13B 14B TA1360AFG , and V . 14R 2005-08-18 ...

Page 84

... Also determine ratios of gradients at Y-OUT ON to Y-OUT OFF in decibel. (∆1, ∆2, and ∆3) 100 IRE 84 Test Method Output amplitude (Y-OUT) ∆3 γ2 ∆2 γ1 ∆1 Note: Solid line indicates gamma OFF. Dotted line indicates gamma ON. TA1360AFG 2.3 Vp-p Input amplitude 2005-08-18 ...

Page 85

... Note: Calculate white-peak blue start point in IRE as setting positive amplitude at pedestal level of output signal to 2.3 Vp-p = 100 IRE. Output 85 Test Method using the figure below. and BS . PCNT Pmax ) using the figure below. GCNT and BS ). Gmin Gmax (Output from pin 14) Start point TA1360AFG ON OFF Input amplitude 2005-08-18 ...

Page 86

... Set subaddress (02) data to (80), and repeat the step 5 above: VACB2R, VACB2G, and VACB2B. 7. Set subaddress (02) data to (C0), and repeat the step 5 above: VACB3R, VACB3G, and VACB3B. 86 Test Method = 100 kHz, picture period amplitude = 0.2 Vp-p) from pin 68. Control drive 0 ACB insertion pulse V ・ BLK period 1H 2H TA1360AFG 3H 4H 2005-08-18 ...

Page 87

... Vp-p) from pin 68. Control drive 0 = (#8VBLK+) − (#8VBLK) = (#8VBLK−) + (#8VBLK) = 100 kHz, picture period amplitude = 0.2 Vp-p) from pin 68. Control drive 0 = 100 kHz, picture period amplitude = 0.2 Vp-p) from pin 24 100 kHz, picture period amplitude = 0.2 Vp-p) from pin 68. Control drive 0 TA1360AFG 2005-08-18 ...

Page 88

... Vp-p) from pin 68. Control drive 0 = 100 kHz, picture period amplitude = 0.2 Vp-p) from pin 68. Control drive 0 = 100 kHz, picture period amplitude = 0.2 Vp-p) from pin 24. 0 (maximum, center, and minimum) respectively. uTXR = 100 kHz, picture period amplitude = 0.2 Vp-p) from pin 68. Control drive 0 (maximum, center, and minimum) brTX TA1360AFG 2005-08-18 ...

Page 89

... Vp-p) from pin 68. Control drive 0 = 100 kHz, picture period amplitude = 0.2 Vp-p) from pin 18 v12R/0 v13G/0 v14B/0.2 OSDG OSDB = 100 kHz, picture period amplitude = 0.2 Vp-p) from pin 68. Control drive 0 = 100 kHz, picture period amplitude = 0.2 Vp-p) from pin 68. Control drive 0 TA1360AFG 2005-08-18 ...

Page 90

... Vp-p) from pin 18. 0 (11), (10), (01), and (00) respectively. uOSDR (11), (10), (01), and (00). Input from pin 21, and measure pin 14, VuOSDB uOSDG = 100 kHz, picture period amplitude = 0.2 Vp-p) from pin 68. Control drive 0 Data (38 brOSD0 Data (78 brOSD1 Data (B8 brOSD2 Data (F8 brOSD3 TA1360AFG 2005-08-18 ...

Page 91

... OSDACL3 、 OSDACL4 Change subaddress (07) data to (80), and repeat the steps above to measure OSDACL3 and OSDACL4. 91 Test Method = 100 kHz, picture period amplitude = 0.2 Vp-p) from pin 68. Control drive 0 = 100 kHz, picture period amplitude = 0.2 Vp-p) from pin 18 −20 × (vOSDACL2/vOSDACL1 −20 × (vOSDACL3/vOSDACL1) 2 TA1360AFG 2005-08-18 ...

Page 92

... Apply 5-V external voltage to pin 80, and repeat the steps above: α14OSD2, α13OSD2, and α12OSD2. 16. Apply 5-V external voltage to pins 1 and 80, and repeat the steps above: α14OSD3, α13OSD3, and α12OSD3. 92 Test Method = 100 kHz, picture period amplitude = 0.2 Vp-p) from pin 68 100 kHz, picture period amplitude = 0.2 Vp-p) from pins 21, 19, and 18. 0 TA1360AFG 2005-08-18 ...

Page 93

... OFF according to the figure below. (BLG 8. Set subaddress (15) data to (04), and repeat the step 7 above. (BLG Note: Calculate blue stretch start point in IRE as setting positive amplitude at pedestal level of output signal to 2.3 Vp-p = 100 IRE. Output amplitude 93 TA1360AFG Test Method ). min ) max ) ...

Page 94

... ON according to the figure below. Calculate pin 14 output amplitude in IRE as setting positive amplitude at pedestal level of output signal to 2.3 Vp-p = 100 IRE. 6. Set subaddress (1A) data to (C4), (C8), and (CC). Repeat the step 5 above. (BLγ2, BLγ3, and BLγ4) Output amplitude 94 Test Method BLγ Intersection poiint TA1360AFG Blue stretch γ OFF Blue stretch γ ON Input amplitude 2005-08-18 ...

Page 95

... IRE (0.857 Vp-p). Then, compare to the plot in the step 2, calculate a point where a gradient changes (WPL1). 5. Repeat the step 4 above by changing subaddress (19) data to (83) and (86). Calculate points where gradients change (WPL2, WPL3). 95 Test Method 80 ns Figure output amplitude Data 87 Data 86 WPL3 Data 83 WPL2 Data 80 WPL1 # 68 input amplitude Figure B TA1360AFG 2005-08-18 ...

Page 96

... HA02 HD input horizontal 1. Set subaddress (00) data to 40H. sync phase 2. Input signal B (as shown in the figure below) to TP50. 3. Monitor #50 (Sync input) and #44 (AFC filter) waveforms. Measure phase difference (HD Test Conditions 29.36 µs 0.285 V 0.593 µ 31.75 µs Signal B 1.5 V 2.35 µ #44 waveform 96 TA1360AFG ). 2005-08-18 ...

Page 97

... B. 31.75 µs 1 (SYNC_OFF_00 − SYNC_TIP_00)/0.286 × 100 thS00 = (SYNC_OFF_01 − SYNC_TIP_01)/0.286 × 100 = (SYNC_OFF_10 − SYNC_TIP_10)/0.286 × 100 = (SYNC_OFF_11 − SYNC_TIP_11)/0.286 × 100 1H 40IRE (= 286 mVp-p) 97 TA1360AFG 0.08H Sync separation level Sync tip level 2005-08-18 ...

Page 98

... Change slave address (01) data from 80H to FEH, and measure phase change amount ∆H of #39 (H-OUT) waveform. SFT+ Signal B #39 waveform Data: 00H #39 waveform Data: 80H #39 waveform Data: FEH Test Conditions . thHD 31.75 µs V thDH 2.35 µs 31.75 µs 1.5 V 2.35 µs ∆H SFT− ∆H SFT+ 98 TA1360AFG SFT− 2005-08-18 ...

Page 99

... Apply no signal input to TP50. 6. Measure #47 clamp pulse phase (CP #39. Signal B #47 waveform #39 waveform #47 waveform Test Conditions 31.75 µs 1.5 V 2.35 µs ∆H#40 ), width ( width (CP ), and output level ( 31.75 µs 1.5 V 2.35 µs CP S0/1 CP V0 TA1360AFG ), and output level PW0 ), ( relation to V2 2005-08-18 ...

Page 100

... Input signal B (as shown in the figure below) to TP50. 3. Increase amplitude of FBP signal to be input to #39 (FBP input) from 0 Vp-p. When #37 (H-OUT) phase locks with that of signal B, measure #39 input amplitude V Test Conditions 31.5 µs 4.13 µs HBP HBP S**a 31.75 µs 1.5 V 2.35 µs 100 TA1360AFG and HBP ) in relation S00a S00b S**b . thFBP 2005-08-18 ...

Page 101

... F37K , F37K , F45K , and F45K MIN MAX MIN MAX + 0.05 V, and V − 0. TP44. Measure frequencies FA and FB according and Low (V37 ) of #37 (H-OUT) output waveform 101 TA1360AFG and TH ) using the following MIN ) MAX , F31K , F31K , F33K , MIN MAX MIN ...

Page 102

... Input signal F (shown in the figure below) to TP52. 3. Increase signal-F cycle from 30 H. Measure the cycle (T TP35. Signal F (TP 52 waveform input) #39 input waveform TP 35 waveform Test Conditions 2.35 µs 29.63 µs 5.6 µs VPw VPt ) when phase locks with that of VPULL 3H T VPULL 102 TA1360AFG GND 2005-08-18 ...

Page 103

... Test Conditions and VBPP according to #47 output waveform VBPP , VBPP , VBPP , VBPP and VBPP as in the step 3 above 262.5H to 1125H VBPP VBPP E according to #12 output waveform. 3H 1125H VBLK 103 TA1360AFG , VBPP , VBPP , VBPP , and MIN 2005-08-18 ...

Page 104

... Video signal (2) Input signal 1 (3) Input signal 2 (4) Input signal 3 Figure T-1 Signals for Text/Color Difference Signal 2 63.5 µs Sine wave of frequency f Amplitude A Sine wave of frequency f 104 TA1360AFG 0 0 2005-08-18 ...

Page 105

... Input signal 4 50 (2) 0% 10% 50% 90% 100 (3) 0% 10% 50% 90% 100% Figure T-2 Test Pulses for Text/Color Difference Signal 2 63.5 µs 20 µs 20 µ τ τ τ τ 105 TA1360AFG 2005-08-18 ...

Page 106

... I L GND 27 SW26 A ANALOG 0.1 µF TP26 B SW25 #26 A ANALOG 0.1 µF TP25 B # #18 #19 #21 #23 #24 TA1360AFG kΩ µF 51 kΩ kΩ ...

Page 107

... ANALOG 0.1 µ Application of H-FREQ switching (31.5 k/33.75 k/45 kHz) Tr. H-FREQ 31.5 kHz 33.75 kHz 45 kHz *: Don’t care TA1360AFG 47µ H CURVE CORR FBP-IN H-OUT VP-OUT DAC1-OUT 2.0 V SCL SDA ANALOG B IN ANALOG G IN ○ : Mylar capacitor Pin 55 voltage Pin 41 voltage ...

Page 108

... ACB Application Circuit + CLAMP p-p CRT G B 0~3.0 V (DC) 108 TA1360AFG CRT CRT B 2005-08-18 ...

Page 109

... Package Dimensions Weight: 1.6 g (typ.) 109 TA1360AFG 2005-08-18 ...

Page 110

... TA1360AFG 2005-08-18 ...

Related keywords