MX27C4111MC-10 MCNIX [Macronix International], MX27C4111MC-10 Datasheet - Page 3

no-image

MX27C4111MC-10

Manufacturer Part Number
MX27C4111MC-10
Description
4M-BIT [512K x8/256K x16] CMOS EPROM WITH PAGE MODE
Manufacturer
MCNIX [Macronix International]
Datasheet
FUNCTIONAL DESCRIPTION
THE PROGRAMMING OF THE MX27C4111
When the MX27C4111 is delivered, or it is erased, the
chip has all 4M bits in the "ONE" or HIGH state. "ZEROs"
are loaded into the MX27C4111 through the procedure
of programming.
For programming, the data to be programmed is applied
with 16 bits in parallel to the data pins.
VCC must be applied simultaneously or before VPP,
and removed simultaneously or after VPP.
programming an MXIC EPROM, a 0.1uF capacitor is
required across VPP and ground to suppress spurious
voltage transients which may damage the device.
FAST PROGRAMMING
The device is set up in the fast programming mode when
the programming voltage VPP = 12.75V is applied, with
VCC = 6.25 V and OE = VIH (Algorithm is shown in
Figure 1). The programming is achieved by applying a
single TTL low level 100us pulse to the CE input after
addresses and data line are stable. If the data is not
verified, an additional pulse is applied for a maximum of
25 pulses. This process is repeated while sequencing
through each address of the device.
programming mode is completed, the data in all address
is verified at VCC = VPP = 5V ± 10%.
PROGRAM INHIBIT MODE
Programming of multiple MX27C4111's in parallel with
different data is also easily accomplished by using the
Program Inhibit Mode. Except for CE and OE, all like
inputs of the parallel MX27C4111 may be common. A
TTL low-level program pulse applied to an MX27C4111
CE input with VPP = 12.5 ± 0.5 V will program the
MX27C4111. A high-level CE input inhibits the other
MX27C4111s from being programmed.
PROGRAM VERIFY MODE
Verification should be performed on the programmed
bits to determine that they were correctly programmed.
The verification should be performed with OE at VIL, CE
at VIH, and VPP at its programming voltage.
P/N: PM0239
When the
When
3
AUTO IDENTIFY MODE
The auto identify mode allows the reading out of a binary
code from an EPROM that will identify its manufacturer
and device type. This mode is intended for use by
programming equipment for the purpose of
automatically matching the device to be programmed
with its corresponding programming algorithm. This
mode is functional in the 25°C ± 5°C ambient
temperature range that is required when programming
the MX27C4111.
To activate this mode, the programming equipment
must force 12.0 ± 0.5 V on address line A9 of the device.
Two identifier bytes may then be sequenced from the
device outputs by toggling address line A0 from VIL to
VIH. All other address lines must be held at VIL during
auto identify mode.
Byte 0 ( A0 = VIL) represents the manufacturer code,
and byte 1 (A0 = VIH), the device identifier code. For the
MX27C4111, these two identifier bytes are given in the
Mode Select Table. All identifiers for manufacturer and
device codes will possess odd parity, with the MSB
(Q15) defined as the parity bit.
READ MODE
The MX27C4111 provides page mode with 8 words/16
bytes per page. In order to get the benefit of fast page
read, the user should keep chip enable(CE) low and
toggle address A0~A2 in word mode or A-1~A2 in byte
mode. Page Read access time(tPA) is equal to the
delay from address stable to data output. It is twice as
fast as normal tACC and is highly recommended.
WORD-WIDE MODE
With BYTE/VPP at VCC ± 0.2V outputs Q0-7 present
data Q0-7 and outputs Q8-15 present data Q8-15, after
CE and OE are appropriately enabled.
BYTE-WIDE MODE
With BYTE/VPP at GND ± 0.2V, outputs Q8-15 are tri-
stated. If Q15/A-1 = VIH, outputs Q0-7 present data bits
Q8-15. If Q15/A-1 = VIL, outputs Q0-7 present data bits
Q0-7.
MX27C4111
REV. 2.7, NOV. 19, 2002

Related parts for MX27C4111MC-10