DSPIC33FJ12MC201-I/SO Microchip Technology, DSPIC33FJ12MC201-I/SO Datasheet - Page 217

IC DSPIC MCU/DSP 12K 20SOIC

DSPIC33FJ12MC201-I/SO

Manufacturer Part Number
DSPIC33FJ12MC201-I/SO
Description
IC DSPIC MCU/DSP 12K 20SOIC
Manufacturer
Microchip Technology
Series
dsPIC™ 33Fr

Specifications of DSPIC33FJ12MC201-I/SO

Program Memory Type
FLASH
Program Memory Size
12KB (12K x 8)
Package / Case
20-SOIC (7.5mm Width)
Core Processor
dsPIC
Core Size
16-Bit
Speed
40 MIPs
Connectivity
I²C, IrDA, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, Motor Control PWM, QEI, POR, PWM, WDT
Number Of I /o
15
Ram Size
1K x 8
Voltage - Supply (vcc/vdd)
3 V ~ 3.6 V
Data Converters
A/D 4x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Product
DSCs
Data Bus Width
16 bit
Processor Series
DSPIC33F
Core
dsPIC
Maximum Clock Frequency
40 MHz
Number Of Programmable I/os
15
Data Ram Size
1 KB
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
52713-733, 52714-737, 53276-922, EWDSPIC
Development Tools By Supplier
PG164130, DV164035, DV244005, DV164005, PG164120, DM240001, DV164033
Minimum Operating Temperature
- 40 C
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
DV164033 - KIT START EXPLORER 16 MPLAB ICD2DM240001 - BOARD DEMO PIC24/DSPIC33/PIC32
Eeprom Size
-
Lead Free Status / Rohs Status
Lead free / RoHS Compliant
20.4
For dsPIC33FJ12MC201/202 devices, the WDT is
driven by the LPRC oscillator. When the WDT is
enabled, the clock source is also enabled.
20.4.1
The nominal WDT clock source from LPRC is 32 kHz.
This feeds a prescaler than can be configured for either
5-bit (divide-by-32) or 7-bit (divide-by-128) operation.
The prescaler is set by the WDTPRE Configuration bit.
With a 32 kHz input, the prescaler yields a nominal
WDT time-out period (T
4 ms in 7-bit mode.
A variable postscaler divides down the WDT prescaler
output and allows for a wide range of time-out periods.
The postscaler is controlled by the WDTPOST<3:0>
Configuration bits (FWDT<3:0>), which allow the
selection of 16 settings, from 1:1 to 1:32,768. Using the
prescaler and postscaler, time-out periods ranging
from 1 ms to 131 seconds can be achieved.
The WDT, prescaler and postscaler are reset:
• On any device Reset
• On the completion of a clock switch, whether
• When a PWRSAV instruction is executed
• When the device exits Sleep or Idle mode to
• By a CLRWDT instruction during normal execution
FIGURE 20-2:
© 2007 Microchip Technology Inc.
All Device Resets
Transition to New Clock Source
Exit Sleep or Idle Mode
PWRSAV Instruction
CLRWDT Instruction
SWDTEN
FWDTEN
LPRC Clock
invoked by software (i.e., setting the OSWEN bit
after changing the NOSC bits) or by hardware
(i.e., Fail-Safe Clock Monitor)
(i.e., Sleep or Idle mode is entered)
resume normal operation
Note:
Watchdog Timer (WDT)
PRESCALER/POSTSCALER
The CLRWDT and PWRSAV instructions
clear the prescaler and postscaler counts
when executed.
WINDIS
WDT BLOCK DIAGRAM
WDT
) of 1 ms in 5-bit mode, or
(divide by N1)
WDTPRE
Prescaler
RS
WDT Window Select
Preliminary
dsPIC33FJ12MC201/202
Watchdog Timer
RS
20.4.2
If the WDT is enabled, it will continue to run during Sleep
or Idle modes. When the WDT time-out occurs, the
device will wake the device and code execution will con-
tinue from where the PWRSAV instruction was executed.
The corresponding SLEEP or IDLE bits (RCON<3,2>)
will need to be cleared in software after the device wakes
up.
20.4.3
The WDT is enabled or disabled by the FWDTEN
Configuration bit in the FWDT Configuration register.
When the FWDTEN Configuration bit is set, the WDT is
always enabled.
The WDT can be optionally controlled in software when
the FWDTEN Configuration bit has been programmed
to ‘0’. The WDT is enabled in software by setting the
SWDTEN control bit (RCON<5>). The SWDTEN con-
trol bit is cleared on any device Reset. The software
WDT option allows the user application to enable the
WDT for critical code segments and disable the WDT
during non-critical segments for maximum power
savings.
The WDT flag bit, WDTO (RCON<4>), is not automatically
cleared following a WDT time-out. To detect subsequent
WDT events, the flag must be cleared in software.
WDTPOST<3:0>
(divide by N2)
Note:
Postscaler
CLRWDT Instruction
SLEEP AND IDLE MODES
ENABLING WDT
If the WINDIS bit (FWDT<6>) is cleared, the
CLRWDT instruction should be executed by
the application software only during the last
1/4 of the WDT period. This CLRWDT win-
dow can be determined by using a timer. If
a CLRWDT instruction is executed before
this window, a WDT Reset occurs.
Sleep/Idle
1
0
DS70265B-page 215
WDT
Wake-up
WDT
Reset

Related parts for DSPIC33FJ12MC201-I/SO