PIC16F84A-20/SO Microchip Technology, PIC16F84A-20/SO Datasheet - Page 654

IC MCU FLASH 1KX14 EE 18SOIC

PIC16F84A-20/SO

Manufacturer Part Number
PIC16F84A-20/SO
Description
IC MCU FLASH 1KX14 EE 18SOIC
Manufacturer
Microchip Technology
Series
PIC® 16Fr

Specifications of PIC16F84A-20/SO

Core Size
8-Bit
Program Memory Size
1.75KB (1K x 14)
Core Processor
PIC
Speed
20MHz
Peripherals
POR, WDT
Number Of I /o
13
Program Memory Type
FLASH
Eeprom Size
64 x 8
Ram Size
68 x 8
Voltage - Supply (vcc/vdd)
4 V ~ 5.5 V
Oscillator Type
External
Operating Temperature
0°C ~ 70°C
Package / Case
18-SOIC (7.5mm Width)
Controller Family/series
PIC16F
No. Of I/o's
13
Eeprom Memory Size
64Byte
Ram Memory Size
68Byte
Cpu Speed
20MHz
No. Of Timers
1
Processor Series
PIC16F
Core
PIC
Data Bus Width
8 bit
Data Ram Size
68 B
Maximum Clock Frequency
20 MHz
Number Of Programmable I/os
13
Number Of Timers
8
Operating Supply Voltage
2 V to 5.5 V
Maximum Operating Temperature
+ 70 C
Mounting Style
SMD/SMT
3rd Party Development Tools
52715-96, 52716-328, 52717-734
Development Tools By Supplier
ICE2000
Minimum Operating Temperature
0 C
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
XLT18SO-1 - SOCKET TRANSITION 18SOIC 300MILI3-DB16F84A - BOARD DAUGHTER ICEPIC3309-1075 - ADAPTER 18-SOIC TO 18-SOIC309-1011 - ADAPTER 18-SOIC TO 18-DIP309-1010 - ADAPTER 18-SOIC TO 18-DIPAC164010 - MODULE SKT PROMATEII DIP/SOIC
Data Converters
-
Connectivity
-
Lead Free Status / Rohs Status
 Details

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
PIC16F84A-20/SO
Quantity:
5 040
PICmicro MID-RANGE MCU FAMILY
APPENDIX A: I
DS31034A-page 34-2
2
C
This section provides an overview of the Inter-Integrated Circuit (I
A.2 “Addressing I
The I
transfers of up to 100 Kbps. An enhanced specification, or fast mode (400 Kbps) is supported.
Standard and Fast mode devices will operate when attached to the same bus, if the bus operates
at the speed of the slower device.
The I
tion of data. When transmitting data, one device is the “master” which initiates transfer on the bus
and generates the clock signals to permit that transfer, while the other device(s) acts as the
“slave.” All portions of the slave protocol are implemented in the SSP module’s hardware, except
general call support, while portions of the master protocol need to be addressed in the
PIC16CXX software. The MSSP module supports the full implementation of the I
tocol, the general call address, and data transfers upto 1 Mbps. The 1 Mbps data transfers are
supported by some of Microchips Serial EEPROMs.
minology.
In the I
transfer, it first transmits the address of the device that it wishes to “talk” to. All devices “listen” to
see if this is their address. Within this address, a bit specifies if the master wishes to
read-from/write-to the slave device. The master and slave are always in opposite modes (trans-
mitter/receiver) of operation during a data transfer. That is they can be thought of as operating in
either of these two relations:
• Master-transmitter and Slave-receiver
• Slave-transmitter and Master-receiver
In both cases the master generates the clock signal.
The output stages of the clock (SCL) and data (SDA) lines must have an open-drain or open-col-
lector in order to perform the wired-AND function of the bus. External pull-up resistors are used
to ensure a high level when no device is pulling the line down. The number of devices that may
be attached to the I
and addressing capability.
OVERVIEW
2
2
C bus is a two-wire serial interface. The original specification, or standard mode, is for data
C interface employs a comprehensive protocol to ensure reliable transmission and recep-
2
C interface protocol each device has an address. When a master wishes to initiate a data
2
C Devices”
2
C bus is limited only by the maximum bus loading specification of 400 pF
discussing the operation of the SSP modules in I
Table A-1
defines some of the I
1997 Microchip Technology Inc.
2
C™) bus, with Subsection
2
C master pro-
2
C mode.
2
C bus ter-

Related parts for PIC16F84A-20/SO