DSPIC30F6012A-30I/PF Microchip Technology, DSPIC30F6012A-30I/PF Datasheet - Page 136

IC DSPIC MCU/DSP 144K 64TQFP

DSPIC30F6012A-30I/PF

Manufacturer Part Number
DSPIC30F6012A-30I/PF
Description
IC DSPIC MCU/DSP 144K 64TQFP
Manufacturer
Microchip Technology
Series
dsPIC™ 30Fr

Specifications of DSPIC30F6012A-30I/PF

Core Processor
dsPIC
Core Size
16-Bit
Speed
30 MIPs
Connectivity
CAN, I²C, SPI, UART/USART
Peripherals
AC'97, Brown-out Detect/Reset, I²S, LVD, POR, PWM, WDT
Number Of I /o
52
Program Memory Size
144KB (48K x 24)
Program Memory Type
FLASH
Eeprom Size
4K x 8
Ram Size
8K x 8
Voltage - Supply (vcc/vdd)
2.5 V ~ 5.5 V
Data Converters
A/D 16x12b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
64-TQFP, 64-VQFP
Core Frequency
40MHz
Core Supply Voltage
5.5V
Embedded Interface Type
CAN, I2C, SPI, UART
No. Of I/o's
52
Flash Memory Size
144KB
Supply Voltage Range
2.5V To 5.5V
Package
64TQFP
Device Core
dsPIC
Family Name
dsPIC30
Maximum Speed
30 MHz
Operating Supply Voltage
3.3|5 V
Data Bus Width
16 Bit
Number Of Programmable I/os
52
Interface Type
CAN/I2C/SPI/UART
On-chip Adc
16-chx12-bit
Number Of Timers
5
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
XLT64PT4 - SOCKET TRAN ICE 64MQFP/TQFPAC164313 - MODULE SKT FOR PM3 64PFAC30F002 - MODULE SOCKET DSPIC30F 64TQFPDV164005 - KIT ICD2 SIMPLE SUIT W/USB CABLE
Lead Free Status / RoHS Status
Lead free / RoHS Compliant, Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
DSPIC30F6012A-30I/PF
Manufacturer:
Holtek
Quantity:
175
Part Number:
DSPIC30F6012A-30I/PF
Manufacturer:
Microchip Technology
Quantity:
10 000
Part Number:
DSPIC30F6012A-30I/PF
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
dsPIC30F6011A/6012A/6013A/6014A
19.1
The module contains a 16-word dual port read only
buffer, called ADCBUF0...ADCBUFF, to buffer the ADC
results. The RAM is 12 bits wide but the data obtained
is represented in one of four different 16-bit data
formats. The contents of the sixteen ADC Result Buffer
registers, ADCBUF0 through ADCBUFF, cannot be
written by user software.
19.2
After the ADC module has been configured, the sample
acquisition is started by setting the SAMP bit. Various
sources, such as a programmable bit, timer time-outs
and external events, will terminate acquisition and start
a conversion. When the A/D conversion is complete,
the result is loaded into ADCBUF0...ADCBUFF, and
the DONE bit and the ADC interrupt flag ADIF are set
after the number of samples specified by the SMPI bit.
The ADC module can be configured for different
interrupt rates as described in Section 19.3 “Select-
ing the Conversion Sequence”.
The following steps should be followed for doing an
conversion:
1.
2.
3.
4.
5.
6.
7.
DS70143D-page 136
Configure the ADC module:
• Configure analog pins, voltage reference and
• Select ADC input channels.
• Select ADC conversion clock.
• Select ADC conversion trigger.
• Turn on ADC module.
Configure ADC interrupt (if required):
• Clear ADIF bit.
• Select ADC interrupt priority.
Start sampling.
Wait the required acquisition time.
Trigger acquisition end, start conversion:
Wait for ADC conversion to complete, by either:
• Waiting for the ADC interrupt, or
• Waiting for the DONE bit to get set.
Read ADC result buffer, clear ADIF if required.
digital I/O.
Conversion Operation
ADC Result Buffer
19.3
Several groups of control bits select the sequence in
which the ADC connects inputs to the sample/hold
channel, converts a channel, writes the buffer memory
and generates interrupts.
The sequence is controlled by the sampling clocks.
The
acquisition/conversion sequences that would be
performed before an interrupt occurs. This can vary
from 1 sample per interrupt to 16 samples per interrupt.
The BUFM bit will split the 16-word results buffer into
two 8-word groups. Writing to the 8-word buffers will be
alternated on each interrupt event.
Use of the BUFM bit will depend on how much time is
available for the moving of the buffers after the
interrupt.
If the processor can quickly unload a full buffer within
the time it takes to acquire and convert one channel,
the BUFM bit can be ‘0’ and up to 16 conversions
(corresponding to the 16 input channels) may be done
per interrupt. The processor will have one acquisition
and conversion time to move the sixteen conversions.
If the processor cannot unload the buffer within the
acquisition and conversion time, the BUFM bit should be
‘1’. For example, if SMPI<3:0> (ADCON2<5:2>) = 0111,
then eight conversions will be loaded into 1/2 of the
buffer, following which an interrupt occurs. The next
eight conversions will be loaded into the other 1/2 of the
buffer. The processor will have the entire time between
interrupts to move the eight conversions.
The ALTS bit can be used to alternate the inputs
selected during the sampling sequence. The input
multiplexer has two sets of sample inputs: MUX A and
MUX B. If the ALTS bit is ‘0’, only the MUX A inputs are
selected for sampling. If the ALTS bit is ‘1’ and
SMPI<3:0> = 0000 on the first sample/convert
sequence, the MUX A inputs are selected and, on the
next acquire/convert sequence, the MUX B inputs are
selected.
The CSCNA bit (ADCON2<10>) will allow the
multiplexer input to be alternately scanned across a
selected number of analog inputs for the MUX A group.
The inputs are selected by the ADCSSL register. If a
particular bit in the ADCSSL register is ‘1’, the
corresponding input is selected. The inputs are always
scanned from lower to higher numbered inputs, starting
after each interrupt. If the number of inputs selected is
greater than the number of samples taken per interrupt,
the higher numbered inputs are unused.
SMPI
Selecting the Conversion
Sequence
bits
© 2008 Microchip Technology Inc.
select
the
number
of

Related parts for DSPIC30F6012A-30I/PF