PIC16F1947-I/PT Microchip Technology, PIC16F1947-I/PT Datasheet - Page 283

no-image

PIC16F1947-I/PT

Manufacturer Part Number
PIC16F1947-I/PT
Description
IC MCU 8BIT FLASH 64TQFP
Manufacturer
Microchip Technology
Series
PIC® XLP™ 16Fr

Specifications of PIC16F1947-I/PT

Core Size
8-Bit
Program Memory Size
28KB (16K x 14)
Core Processor
PIC
Speed
32MHz
Connectivity
I²C, LIN, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number Of I /o
54
Program Memory Type
FLASH
Eeprom Size
256 x 8
Ram Size
1K x 8
Voltage - Supply (vcc/vdd)
1.8 V ~ 5.5 V
Data Converters
A/D 17x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
64-TFQFP
Controller Family/series
PIC16F
Eeprom Memory Size
256Byte
Ram Memory Size
1024Byte
Cpu Speed
32MHz
No. Of Timers
5
Interface
EUSART, I2C, SPI
Processor Series
PIC16F
Core
PIC
Data Bus Width
8 bit
Data Ram Size
1 KB
Interface Type
EUSART, I2C, SPI
Maximum Clock Frequency
32 MHz
Number Of Programmable I/os
54
Number Of Timers
5
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
52715-96, 52716-328, 52717-734
Development Tools By Supplier
PG164130, DV164035, DV244005, DV164005
Minimum Operating Temperature
- 40 C
On-chip Adc
10 bit, 17 Channel
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Lead Free Status / RoHS Status
Lead free / RoHS Compliant, Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
PIC16F1947-I/PT
Manufacturer:
XILINX
Quantity:
86
Part Number:
PIC16F1947-I/PT
Manufacturer:
Microchip Technology
Quantity:
10 000
Part Number:
PIC16F1947-I/PT
Manufacturer:
MICROCHI
Quantity:
20 000
Part Number:
PIC16F1947-I/PT
0
Company:
Part Number:
PIC16F1947-I/PT
Quantity:
6 400
Company:
Part Number:
PIC16F1947-I/PT
Quantity:
1 600
Company:
Part Number:
PIC16F1947-I/PT
Quantity:
1 600
FIGURE 24-31:
24.6.10
While in Sleep mode, the I
addresses or data and when an address match or
complete byte transfer occurs, wake the processor
from Sleep (if the MSSPx interrupt is enabled).
24.6.11
A Reset disables the MSSPx module and terminates
the current transfer.
24.6.12
In Multi-Master mode, the interrupt generation on the
detection of the Start and Stop conditions allows the
determination of when the bus is free. The Stop (P) and
Start (S) bits are cleared from a Reset or when the
MSSPx module is disabled. Control of the I
be taken when the P bit of the SSPxSTAT register is
set, or the bus is Idle, with both the S and P bits clear.
When the bus is busy, enabling the SSPx interrupt will
generate the interrupt when the Stop condition occurs.
In multi-master operation, the SDAx line must be
monitored for arbitration to see if the signal level is the
expected output level. This check is performed by
hardware with the result placed in the BCLxIF bit.
The states where arbitration can be lost are:
• Address Transfer
• Data Transfer
• A Start Condition
• A Repeated Start Condition
• An Acknowledge Condition
 2010 Microchip Technology Inc.
Note: T
SLEEP OPERATION
EFFECTS OF A RESET
MULTI-MASTER MODE
SCLx
SDAx
Write to SSPxCON2,
Falling edge of
9th clock
BRG
= one Baud Rate Generator period.
STOP CONDITION RECEIVE OR TRANSMIT MODE
ACK
2
set PEN
C slave module can receive
T
T
BRG
BRG
SDAx asserted low before rising edge of clock
to setup Stop condition
2
C bus may
T
SCLx brought high after T
BRG
Preliminary
P
SCLx = 1 for T
after SDAx sampled high. P bit (SSPxSTAT<4>) is set.
T
BRG
24.6.13
Multi-Master mode support is achieved by bus arbitra-
tion. When the master outputs address/data bits onto
the SDAx pin, arbitration takes place when the master
outputs a ‘1’ on SDAx, by letting SDAx float high and
another master asserts a ‘0’. When the SCLx pin floats
high, data should be stable. If the expected data on
SDAx is a ‘1’ and the data sampled on the SDAx pin is
‘0’, then a bus collision has taken place. The master will
set the Bus Collision Interrupt Flag, BCLxIF, and reset
the I
If a transmit was in progress when the bus collision
occurred, the transmission is halted, the BF flag is
cleared, the SDAx and SCLx lines are deasserted and
the SSPxBUF can be written to. When the user ser-
vices the bus collision Interrupt Service Routine and if
the I
tion by asserting a Start condition.
If a Start, Repeated Start, Stop or Acknowledge condi-
tion was in progress when the bus collision occurred, the
condition is aborted, the SDAx and SCLx lines are deas-
serted and the respective control bits in the SSPxCON2
register are cleared. When the user services the bus col-
lision Interrupt Service Routine and if the I
the user can resume communication by asserting a Start
condition.
The master will continue to monitor the SDAx and SCLx
pins. If a Stop condition occurs, the SSPxIF bit will be set.
A write to the SSPxBUF will start the transmission of
data at the first data bit, regardless of where the
transmitter left off when the bus collision occurred.
In Multi-Master mode, the interrupt generation on the
detection of Start and Stop conditions allows the deter-
mination of when the bus is free. Control of the I
can be taken when the P bit is set in the SSPxSTAT
register, or the bus is Idle and the S and P bits are
cleared.
PEN bit (SSPxCON2<2>) is cleared by
hardware and the SSPxIF bit is set
2
2
C port to its Idle state
C bus is free, the user can resume communica-
BRG
BRG
PIC16F/LF1946/47
, followed by SDAx = 1 for T
MULTI -MASTER COMMUNICATION,
BUS COLLISION AND BUS
ARBITRATION
(Figure
BRG
24-31).
DS41414B-page 283
2
C bus is free,
2
C bus

Related parts for PIC16F1947-I/PT