PIC18F2321-I/SS Microchip Technology, PIC18F2321-I/SS Datasheet - Page 168

IC PIC MCU FLASH 4KX16 28SSOP

PIC18F2321-I/SS

Manufacturer Part Number
PIC18F2321-I/SS
Description
IC PIC MCU FLASH 4KX16 28SSOP
Manufacturer
Microchip Technology
Series
PIC® 18Fr

Specifications of PIC18F2321-I/SS

Core Size
8-Bit
Program Memory Size
8KB (4K x 16)
Core Processor
PIC
Speed
40MHz
Connectivity
I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number Of I /o
25
Program Memory Type
FLASH
Eeprom Size
256 x 8
Ram Size
512 x 8
Voltage - Supply (vcc/vdd)
4.2 V ~ 5.5 V
Data Converters
A/D 10x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
28-SSOP
Controller Family/series
PIC18
No. Of I/o's
25
Eeprom Memory Size
256Byte
Ram Memory Size
512Byte
Cpu Speed
40MHz
No. Of Timers
4
Processor Series
PIC18F
Core
PIC
Data Bus Width
8 bit
Data Ram Size
512 B
Interface Type
EUSART, I2C, MSSP, SPI
Maximum Clock Frequency
40 MHz
Number Of Programmable I/os
25
Number Of Timers
4
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
52715-96, 52716-328, 52717-734, 52712-325, EWPIC18
Development Tools By Supplier
PG164130, DV164035, DV244005, DV164005, PG164120, ICE4000, ICE2000, DV164136
Minimum Operating Temperature
- 40 C
On-chip Adc
10 bit, 10 Channel
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
AC164307 - MODULE SKT FOR PM3 28SSOP
Lead Free Status / Rohs Status
 Details

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
PIC18F2321-I/SS
Manufacturer:
ATMEL
Quantity:
1 000
PIC18F4321 FAMILY
17.3.5
The master can initiate the data transfer at any time
because it controls the SCK. The master determines
when the slave (Processor 2, Figure 17-2) is to
broadcast data by the software protocol.
In Master mode, the data is transmitted/received as
soon as the SSPBUF register is written to. If the SPI
operation is only going to receive, the SDO output
could be disabled (programmed as an input). The
SSPSR register will continue to shift in the signal
present on the SDI pin at the programmed clock rate.
As each byte is received, it will be loaded into the
SSPBUF register as if a normal received byte (inter-
rupts and status bits appropriately set). This could be
useful in receiver applications as a “Line Activity
Monitor” mode.
FIGURE 17-3:
DS39689E-page 166
Write to
SSPBUF
SCK
(CKP = 0
CKE = 0)
SCK
(CKP = 1
CKE = 0)
SCK
(CKP = 0
CKE = 1)
SCK
(CKP = 1
CKE = 1)
SDO
(CKE = 0)
SDO
(CKE = 1)
SDI
(SMP = 0)
Input
Sample
(SMP = 0)
SDI
(SMP = 1)
Input
Sample
(SMP = 1)
SSPIF
SSPSR to
SSPBUF
MASTER MODE
SPI MODE WAVEFORM (MASTER MODE)
bit 7
bit 7
bit 7
bit 7
bit 6
bit 6
bit 5
bit 5
Preliminary
bit 4
bit 4
bit 3
bit 3
The clock polarity is selected by appropriately
programming the CKP bit (SSPCON1<4>). This then,
would give waveforms for SPI communication as
shown in Figure 17-3, Figure 17-5 and Figure 17-6,
where the MSB is transmitted first. In Master mode, the
SPI clock rate (bit rate) is user-programmable to be one
of the following:
• F
• F
• F
• Timer2 output/2
This allows a maximum data rate (at 40 MHz) of
10.00 Mbps.
Figure 17-3 shows the waveforms for Master mode.
When the CKE bit is set, the SDO data is valid before
there is a clock edge on SCK. The change of the input
sample is shown based on the state of the SMP bit. The
time when the SSPBUF is loaded with the received
data is shown.
OSC
OSC
OSC
/4 (or T
/16 (or 4 • T
/64 (or 16 • T
bit 2
bit 2
CY
)
bit 1
bit 1
CY
CY
)
)
© 2007 Microchip Technology Inc.
bit 0
bit 0
bit 0
bit 0
Next Q4 Cycle
after Q2↓
4 Clock
Modes

Related parts for PIC18F2321-I/SS