ATMEGA32-16AC Atmel, ATMEGA32-16AC Datasheet - Page 9

IC AVR MCU 32K 16MHZ COM 44-TQFP

ATMEGA32-16AC

Manufacturer Part Number
ATMEGA32-16AC
Description
IC AVR MCU 32K 16MHZ COM 44-TQFP
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheets

Specifications of ATMEGA32-16AC

Core Processor
AVR
Core Size
8-Bit
Speed
16MHz
Connectivity
I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
32
Program Memory Size
32KB (16K x 16)
Program Memory Type
FLASH
Eeprom Size
1K x 8
Ram Size
2K x 8
Voltage - Supply (vcc/vdd)
4.5 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
0°C ~ 70°C
Package / Case
44-TQFP, 44-VQFP
Lead Free Status / RoHS Status
Contains lead / RoHS non-compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA32-16AC
Manufacturer:
COMPAL
Quantity:
500
Part Number:
ATMEGA32-16AC
Manufacturer:
Atmel
Quantity:
10 000
ALU
Logic Unit
2503Q–AVR–02/11
Arithmetic
Program Flash memory space is divided in two sections, the Boot program section and the
Application Program section. Both sections have dedicated Lock bits for write and read/write
protection. The SPM instruction that writes into the Application Flash memory section must
reside in the Boot Program section.
During interrupts and subroutine calls, the return address Program Counter (PC) is stored on the
Stack. The Stack is effectively allocated in the general data SRAM, and consequently the Stack
size is only limited by the total SRAM size and the usage of the SRAM. All user programs must
initialize the SP in the reset routine (before subroutines or interrupts are executed). The Stack
Pointer SP is read/write accessible in the I/O space. The data SRAM can easily be accessed
through the five different addressing modes supported in the AVR architecture.
The memory spaces in the AVR architecture are all linear and regular memory maps.
A flexible interrupt module has its control registers in the I/O space with an additional global
interrupt enable bit in the Status Register. All interrupts have a separate interrupt vector in the
interrupt vector table. The interrupts have priority in accordance with their interrupt vector posi-
tion. The lower the interrupt vector address, the higher the priority.
The I/O memory space contains 64 addresses for CPU peripheral functions as Control Regis-
ters, SPI, and other I/O functions. The I/O Memory can be accessed directly, or as the Data
Space locations following those of the Register File, $20 - $5F.
The high-performance Atmel
purpose working registers. Within a single clock cycle, arithmetic operations between general
purpose registers or between a register and an immediate are executed. The ALU operations
are divided into three main categories – arithmetic, logical, and bit-functions. Some implementa-
tions of the architecture also provide a powerful multiplier supporting both signed/unsigned
multiplication and fractional format. See the “Instruction Set” section for a detailed description.
®
AVR
®
ALU operates in direct connection with all the 32 general
ATmega32(L)
9

Related parts for ATMEGA32-16AC