DSPIC30F4012-20I/SO Microchip Technology, DSPIC30F4012-20I/SO Datasheet - Page 45

no-image

DSPIC30F4012-20I/SO

Manufacturer Part Number
DSPIC30F4012-20I/SO
Description
IC, DSC, 16BIT, 48KB 20MHZ, 5.5V, SOIC28
Manufacturer
Microchip Technology
Series
DsPIC30Fr

Specifications of DSPIC30F4012-20I/SO

Core Frequency
20MHz
Embedded Interface Type
CAN, I2C, SPI, UART
No. Of I/o's
20
Flash Memory Size
48KB
Supply Voltage Range
2.5V To 5.5V
Core Processor
dsPIC
Core Size
16-Bit
Speed
20 MIPS
Connectivity
CAN, I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, Motor Control PWM, QEI, POR, PWM, WDT
Number Of I /o
20
Program Memory Size
48KB (16K x 24)
Program Memory Type
FLASH
Eeprom Size
1K x 8
Ram Size
2K x 8
Voltage - Supply (vcc/vdd)
2.5 V ~ 5.5 V
Data Converters
A/D 6x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
28-SOIC (7.5mm Width)
Package
28SOIC W
Device Core
dsPIC
Family Name
dsPIC30
Maximum Speed
20 MHz
Operating Supply Voltage
2.5|3.3|5 V
Data Bus Width
16 Bit
Number Of Programmable I/os
20
Interface Type
CAN/I2C/SPI/UART
On-chip Adc
6-chx10-bit
Number Of Timers
5
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
XLT28SO-1 - SOCKET TRANSITION 28SOIC 300MIL
Lead Free Status / RoHS Status
Lead free / RoHS Compliant, Lead free / RoHS Compliant
Other names
DSPIC30F401220ISO

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
DSPIC30F4012-20I/SO
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
5.2
A Reset is not a true exception, because the interrupt
controller is not involved in the Reset process. The pro-
cessor initializes its registers in response to a Reset,
which forces the PC to zero. The processor then begins
program execution at location 0x000000. A GOTO
instruction is stored in the first program memory loca-
tion, immediately followed by the address target for the
GOTO instruction. The processor executes the GOTO to
the specified address and then begins operation at the
specified target (start) address.
5.2.1
There are 5 sources of error which will cause a device
reset.
• Watchdog Time-out:
• Uninitialized W Register Trap:
• Illegal Instruction Trap:
• Brown-out Reset (BOR):
• Trap Lockout:
© 2010 Microchip Technology Inc.
The watchdog has timed out, indicating that the
processor is no longer executing the correct flow
of code.
An attempt to use an uninitialized W register as
an Address Pointer will cause a Reset.
Attempted execution of any unused opcodes will
result in an illegal instruction trap. Note that a
fetch of an illegal instruction does not result in an
illegal instruction trap if that instruction is flushed
prior to execution due to a flow change.
A momentary dip in the power supply to the
device has been detected which may result in
malfunction.
Occurrence of multiple trap conditions
simultaneously will cause a Reset.
Reset Sequence
RESET SOURCES
5.3
Traps can be considered as non-maskable interrupts,
indicating a software or hardware error which adhere to
a predefined priority, as shown in
intended to provide the user a means to correct errone-
ous operation during debug and when operating within
the application.
Note that many of these trap conditions can only be
detected when they occur. Consequently, the question-
able instruction is allowed to complete prior to trap
exception processing. If the user chooses to recover
from the error, the result of the erroneous action that
caused the trap may have to be corrected.
There are 8 fixed priority levels for traps, Level 8
through Level 15, which means that the IPL3 is always
set during processing of a trap.
If the user is not currently executing a trap and he sets
the IPL<3:0> bits to a value of ‘0111’ (Level 7), then all
interrupts are disabled, but traps can still be processed.
5.3.1
The following traps are provided with increasing
priority. However, since all traps can be nested, priority
has little effect.
5.3.1.1
The math error trap executes under the following four
circumstances:
1.
2.
3.
4.
Note:
dsPIC30F4011/4012
Should an attempt be made to divide by zero,
the divide operation will be aborted on a cycle
boundary and the trap taken.
If enabled, a math error trap will be taken when
an arithmetic operation on either accumulator A
or B causes an overflow from bit 31 and the
accumulator guard bits are not utilized.
If enabled, a math error trap will be taken when
an arithmetic operation on either accumulator A
or B causes a catastrophic overflow from bit 39
and all saturation is disabled.
If the shift amount specified in a shift instruction
is greater than the maximum allowed shift
amount, a trap will occur.
Traps
If the user does not intend to take correc-
tive action in the event of a trap error
condition, these vectors must be loaded
with the address of a default handler that
simply contains the RESET instruction. If,
on the other hand, one of the vectors
containing an invalid address is called, an
address error trap is generated.
TRAP SOURCES
Math Error Trap
Figure
DS70135G-page 45
5-1. They are

Related parts for DSPIC30F4012-20I/SO