LTC2402CMS Linear Technology, LTC2402CMS Datasheet - Page 15

IC ADC 24BIT 2CH MICROPWR 10MSOP

LTC2402CMS

Manufacturer Part Number
LTC2402CMS
Description
IC ADC 24BIT 2CH MICROPWR 10MSOP
Manufacturer
Linear Technology
Datasheet

Specifications of LTC2402CMS

Number Of Bits
24
Sampling Rate (per Second)
7.5
Data Interface
MICROWIRE™, Serial, SPI™
Number Of Converters
2
Power Dissipation (max)
1mW
Voltage Supply Source
Single Supply
Operating Temperature
0°C ~ 70°C
Mounting Type
Surface Mount
Package / Case
10-TFSOP, 10-MSOP (0.118", 3.00mm Width)
Lead Free Status / RoHS Status
Contains lead / RoHS non-compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
LTC2402CMS
Manufacturer:
LT
Quantity:
10 000
Part Number:
LTC2402CMS
Manufacturer:
LINEAR/凌特
Quantity:
20 000
Part Number:
LTC2402CMS#PBF
Manufacturer:
LINEAR/凌特
Quantity:
20 000
APPLICATIO S I FOR ATIO
In addition, the CS signal can be used to trigger a new
conversion cycle before the entire serial data transfer has
been completed. The LTC2401/LTC2402 will abort any
serial data transfer in progress and start a new conversion
cycle anytime a LOW-to-HIGH transition is detected at the
CS pin after the converter has entered the data output state
(i.e., after the first rising edge of SCK occurs with CS = 0).
Finally, CS can be used to control the free-running modes
of operation, see Serial Interface Timing Modes section.
Grounding CS will force the ADC to continuously convert
at the maximum output rate selected by F
capacitor to CS will reduce the output rate and power
dissipation by a factor proportional to the capacitor’s
value, see Figures 12 to 14.
SERIAL INTERFACE TIMING MODES
The LTC2401/LTC2402’s 3-wire interface is SPI and
MICROWIRE compatible. This interface offers several
flexible modes of operation. These include internal/exter-
nal serial clock, 2- or 3-wire I/O, single cycle conversion
and autostart. The following sections describe each of
these serial interface timing modes in detail. In all these
cases, the converter can use the internal oscillator (F
LOW or F
the F
External Serial Clock, Single Cycle Operation
(SPI/MICROWIRE Compatible)
This timing mode uses an external serial clock to shift out
the conversion result and a CS signal to monitor and
control the state of the conversion cycle, see Figure 5.
Table 4. LTC2401/LTC2402 Interface Timing Modes
Configuration
External SCK, Single Cycle Conversion
External SCK, 2-Wire I/O
Internal SCK, Single Cycle Conversion
Internal SCK, 2-Wire I/O, Continuous Conversion
Internal SCK, Autostart Conversion
O
pin. Refer to Table 4 for a summary.
O
= HIGH) or an external oscillator connected to
U
U
W
O
U
External
External
Internal
Internal
Internal
Source
. Tying a
SCK
O
=
The serial clock mode is selected on the falling edge of CS.
To select the external serial clock mode, the serial clock pin
(SCK) must be LOW during each CS falling edge.
The serial data output pin (SDO) is Hi-Z as long as CS is
HIGH. At any time during the conversion cycle, CS may be
pulled LOW in order to monitor the state of the converter.
While CS is pulled LOW, EOC is output to the SDO pin. EOC
= 1 while a conversion is in progress and EOC = 0 if the
device is in the sleep state. Independent of CS, the device
automatically enters the low power sleep state once the
conversion is complete.
When the device is in the sleep state (EOC = 0), its
conversion result is held in an internal static shift register.
The device remains in the sleep state until the first rising
edge of SCK is seen while CS is LOW. Data is shifted out
the SDO pin on each falling edge of SCK. This enables
external circuitry to latch the output on the rising edge of
SCK. EOC can be latched on the first rising edge of SCK
and the last bit of the conversion result can be latched on
the 32nd rising edge of SCK. On the 32nd falling edge of
SCK, the device begins a new conversion. SDO goes HIGH
(EOC = 1) indicating a conversion is in progress.
At the conclusion of the data cycle, CS may remain LOW
and EOC monitored as an end-of-conversion interrupt.
Alternatively, CS may be driven HIGH setting SDO to Hi-Z.
As described above, CS may be pulled LOW at any time in
order to monitor the conversion status.
Typically, CS remains LOW during the data output state.
However, the data output state may be aborted by pulling
CS HIGH anytime between the first rising edge and the
32nd falling edge of SCK, see Figure 6. On the rising edge
Conversion
CS and SCK
Continuous
Control
Cycle
CS
SCK
C
EXT
CS and SCK
LTC2401/LTC2402
Control
Internal
Internal
Output
CS
Data
SCK
Connection
Waveforms
Figures 5, 6
Figures 8, 9
Figure 10
Figure 11
Figure 7
and
15

Related parts for LTC2402CMS