ADV7180BSTZ Analog Devices Inc, ADV7180BSTZ Datasheet - Page 34

IC VIDEO DECODER SDTV 64-LQFP

ADV7180BSTZ

Manufacturer Part Number
ADV7180BSTZ
Description
IC VIDEO DECODER SDTV 64-LQFP
Manufacturer
Analog Devices Inc
Type
Video Decoderr
Datasheet

Specifications of ADV7180BSTZ

Design Resources
Low Cost Differential Video Receiver Using ADA4851 Amplifier and ADV7180 Video Decoder (CN0060) Low Cost Video Multiplexer for Video Switching Using ADA4853-2 Op Amp with Disable Function (CN0076)
Applications
Digital Cameras, Mobile Phones, Portable Video
Voltage - Supply, Analog
1.71 V ~ 1.89 V
Voltage - Supply, Digital
1.65 V ~ 2 V
Mounting Type
Surface Mount
Package / Case
64-LQFP
Resolution (bits)
10bit
Input Format
Analog
Output Format
Digital
Adc Sample Rate
57.27MSPS
Power Dissipation Pd
15µW
No. Of Input Channels
6
Supply Voltage Range
1.71V To 1.89V
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
EVAL-ADV7180LQEBZ - BOARD EVALUATION ADV7180EVAL-ADV7180LFEBZ - BOARD EVAL FOR ADV7180 LFCSP
Lead Free Status / RoHS Status
Lead free / RoHS Compliant, Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ADV7180BSTZ
Manufacturer:
AMIS
Quantity:
6 240
Part Number:
ADV7180BSTZ
Manufacturer:
Analog Devices Inc
Quantity:
10 000
Part Number:
ADV7180BSTZ
Manufacturer:
ADI
Quantity:
8 000
Part Number:
ADV7180BSTZ
Manufacturer:
ADI/亚德诺
Quantity:
20 000
Part Number:
ADV7180BSTZ-REEL
Manufacturer:
Analog Devices Inc
Quantity:
10 000
ADV7180
CSFM[2:0], C Shaping Filter Mode, Address 0x17[7:5]
The C shaping filter mode bits allow the user to select from a
range of low-pass filters for the chrominance signal. When
switched in automatic mode, the widest filter is selected based
on the video standard/format and user choice (see Setting 000
and Setting 001 in Table 37).
Table 37. CSFM Function
CSFM[2:0]
000 (default)
001
010
011
100
101
110
111
Figure 26 shows the responses of SH1 (narrowest) to SH5
(widest) in addition to the wideband mode (shown in red).
GAIN OPERATION
The gain control within the ADV7180 is done on a purely
digital basis. The input ADC supports a 10-bit range mapped
into a 1.0 V analog voltage range. Gain correction takes place
after the digitization in the form of a digital multiplier.
Advantages of this architecture over the commonly used
programmable gain amplifier (PGA) before the ADC include
the fact that the gain is now completely independent of supply,
temperature, and process variations.
As shown in Figure 28, the ADV7180 can decode a video signal
as long as it fits into the ADC window. The components for this
are the amplitude of the input signal and the dc level it resides on.
The dc level is set by the clamping circuitry (see the Clamp
Operation section).
If the amplitude of the analog video signal is too high, clipping
may occur, resulting in visual artifacts. The analog input range
of the ADC, together with the clamp level, determines the
maximum supported amplitude of the video signal.
Description
Autoselection 1.5 MHz bandwidth
Autoselection 2.17 MHz bandwidth
SH1
SH2
SH3
SH4
SH5
Wideband mode
MINIMUM
VOLTAGE
MAXIMUM
VOLTAGE
CLAMP
LEVEL
Figure 28. Gain Control Overview
Rev. F | Page 34 of 116
ANALOG VOLTAGE
RANGE SUPPORTED BY ADC (1V RANGE FOR ADV7180)
ADC
Figure 27 shows a typical voltage divider network that is required
to keep the input video signal within the allowed range of the ADC,
0 V to 1 V. This circuit should be placed before all analog inputs
to the ADV7180.
The minimum supported amplitude of the input video is
determined by the ability of the ADV7180 to retrieve horizontal
and vertical timing and to lock to the color burst, if present.
There are separate gain control units for luma and chroma data.
Both can operate independently of each other. The chroma unit,
however, can also take its gain value from the luma path.
The possible AGC modes are shown in Table 38.
Table 38. AGC Modes
Input
Video Type
Any
CVBS
Y/C
YPrPb
It is possible to freeze the automatic gain control loops. This
causes the loops to stop updating and the AGC determined gain
at the time of the freeze to stay active until the loop is either
unfrozen or the gain mode of operation is changed.
The currently active gain from any of the modes can be read
back. Refer to the description of the dual-function manual gain
registers, LG[11:0] luma gain and CG[11:0] chroma gain, in the
Luma Gain and Chroma Gain sections.
PROCESSOR
DATA PRE-
ANALOG VIDEO
(DPP)
INPUT
Luma Gain
Manual gain luma
Dependent on
horizontal sync depth
Peak white
Dependent on
horizontal sync depth
Peak white
Dependent on
horizontal sync depth
Figure 27. Input Voltage Divider Network
(GAIN SELECTION ONLY)
36Ω
VIDEO PROCESSOR
CONTROL
GAIN
39Ω
100nF
Chroma Gain
Manual gain chroma
Dependent on color-burst
amplitude taken from
luma path
Dependent on color-burst
amplitude taken from
luma path
Dependent on color-burst
amplitude taken from
luma path
Dependent on color-burst
amplitude
Taken from luma path
AIN_OF_ADV7180

Related parts for ADV7180BSTZ