ATmega16A Atmel Corporation, ATmega16A Datasheet - Page 177

no-image

ATmega16A

Manufacturer Part Number
ATmega16A
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of ATmega16A

Flash (kbytes)
16 Kbytes
Pin Count
44
Max. Operating Frequency
16 MHz
Cpu
8-bit AVR
# Of Touch Channels
16
Hardware Qtouch Acquisition
No
Max I/o Pins
32
Ext Interrupts
3
Usb Speed
No
Usb Interface
No
Spi
1
Twi (i2c)
1
Uart
1
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
8
Adc Resolution (bits)
10
Adc Speed (ksps)
15
Analog Comparators
1
Resistive Touch Screen
No
Temp. Sensor
No
Crypto Engine
No
Sram (kbytes)
1
Eeprom (bytes)
512
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
No
Temp. Range (deg C)
-40 to 85
I/o Supply Class
2.7 to 5.5
Operating Voltage (vcc)
2.7 to 5.5
Fpu
No
Mpu / Mmu
no / no
Timers
3
Output Compare Channels
4
Input Capture Channels
1
Pwm Channels
4
32khz Rtc
Yes
Calibrated Rc Oscillator
Yes

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATmega16A-AU
Manufacturer:
HIROSE
Quantity:
3 000
Part Number:
ATmega16A-AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega16A-AU
Manufacturer:
MICROCHIP
Quantity:
250
Part Number:
ATmega16A-AU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATmega16A-AUR
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega16A-AUR
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
Part Number:
ATmega16A-PU
Manufacturer:
AT
Quantity:
20 000
Company:
Part Number:
ATmega16A-PU
Quantity:
25 000
Part Number:
ATmega16A-U-TH
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATmega16AU-TH
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
20.3.3
8154B–AVR–07/09
Address Packet Format
condition is issued between a START and STOP condition. This is referred to as a REPEATED
START condition, and is used when the Master wishes to initiate a new transfer without releas-
ing control of the bus. After a REPEATED START, the bus is considered busy until the next
STOP. This is identical to the START behavior, and therefore START is used to describe both
START and REPEATED START for the remainder of this datasheet, unless otherwise noted. As
depicted below, START and STOP conditions are signalled by changing the level of the SDA
line when the SCL line is high.
Figure 20-3. START, REPEATED START, and STOP Conditions
All address packets transmitted on the TWI bus are nine bits long, consisting of seven address
bits, one READ/WRITE control bit and an acknowledge bit. If the READ/WRITE bit is set, a read
operation is to be performed, otherwise a write operation should be performed. When a Slave
recognizes that it is being addressed, it should acknowledge by pulling SDA low in the ninth SCL
(ACK) cycle. If the addressed Slave is busy, or for some other reason can not service the Mas-
ter’s request, the SDA line should be left high in the ACK clock cycle. The Master can then
transmit a STOP condition, or a REPEATED START condition to initiate a new transmission. An
address packet consisting of a Slave address and a READ or a WRITE bit is called SLA+R or
SLA+W, respectively.
The MSB of the address byte is transmitted first. Slave addresses can freely be allocated by the
designer, but the address 0000 000 is reserved for a general call.
When a general call is issued, all Slaves should respond by pulling the SDA line low in the ACK
cycle. A general call is used when a Master wishes to transmit the same message to several
Slaves in the system. When the general call address followed by a Write bit is transmitted on the
bus, all Slaves set up to acknowledge the general call will pull the SDA line low in the ack cycle.
The following data packets will then be received by all the Slaves that acknowledged the general
call. Note that transmitting the general call address followed by a Read bit is meaningless, as
this would cause contention if several Slaves started transmitting different data.
All addresses of the format 1111 xxx should be reserved for future purposes.
SDA
SCL
START
STOP START
REPEATED START
ATmega16A
STOP
177

Related parts for ATmega16A