ATtiny24A Atmel Corporation, ATtiny24A Datasheet - Page 143

no-image

ATtiny24A

Manufacturer Part Number
ATtiny24A
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of ATtiny24A

Flash (kbytes)
2 Kbytes
Pin Count
14
Max. Operating Frequency
20 MHz
Cpu
8-bit AVR
# Of Touch Channels
4
Hardware Qtouch Acquisition
No
Max I/o Pins
12
Ext Interrupts
12
Usb Speed
No
Usb Interface
No
Spi
1
Twi (i2c)
1
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
8
Adc Resolution (bits)
10
Adc Speed (ksps)
15
Analog Comparators
1
Resistive Touch Screen
No
Temp. Sensor
Yes
Crypto Engine
No
Sram (kbytes)
0.12
Eeprom (bytes)
128
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
Yes
Temp. Range (deg C)
-40 to 85
I/o Supply Class
1.8 to 5.5
Operating Voltage (vcc)
1.8 to 5.5
Fpu
No
Mpu / Mmu
no / no
Timers
2
Output Compare Channels
4
Input Capture Channels
1
Pwm Channels
4
32khz Rtc
No
Calibrated Rc Oscillator
Yes

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATtiny24A-CCU
Manufacturer:
ATMEL
Quantity:
1 001
Part Number:
ATtiny24A-CCU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATtiny24A-CCUR
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATtiny24A-MU
Manufacturer:
ATMEL
Quantity:
2 710
Part Number:
ATtiny24A-MU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATtiny24A-SSFR
Manufacturer:
ISD
Quantity:
1 600
Company:
Part Number:
ATtiny24A-SSFR
Quantity:
1 900
Part Number:
ATtiny24A-SSU
Manufacturer:
ATMEL
Quantity:
3 100
Part Number:
ATtiny24A-SSU
Manufacturer:
ATMEL
Quantity:
15 000
Part Number:
ATtiny24A-SSU
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
Company:
Part Number:
ATtiny24A-SSU
Quantity:
12 500
Part Number:
ATtiny24A-SSUR
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
16.11.3
16.12 Temperature Measurement
8183D–AVR–04/11
Bipolar Differential Conversion
If differential channels and a bipolar input mode are used, the result is
where V
and V
0x200 (-512d) through 0x1FF (+511d). The GAIN is either 1x or 20x. Note that if the user wants
to perform a quick polarity check of the result, it is sufficient to read the MSB of the result (ADC9
in ADCH). If the bit is one, the result is negative, and if this bit is zero, the result is positive.
As default the ADC converter operates in the unipolar input mode, but the bipolar input mode
can be selected by writting the BIN bit in the ADCSRB to one. In the bipolar input mode two-
sided voltage differences are allowed and thus the voltage on the negative input pin can also be
larger than the voltage on the positive input pin.
The temperature measurement is based on an on-chip temperature sensor that is coupled to a
single ended ADC8 channel. Selecting the ADC8 channel by writing the MUX[5:0] bits in
ADMUX register to “100010” enables the temperature sensor. The internal 1.1V reference must
also be selected for the ADC reference source in the temperature sensor measurement. When
the temperature sensor is enabled, the ADC converter can be used in single conversion mode to
measure the voltage over the temperature sensor.
The measured voltage has a linear relationship to the temperature as described in
The sensitivity is approximately 1 LSB / °C and the accuracy depends on the method of user cal-
ibration. Typically, the measurement accuracy after a single temperature calibration is ±
assuming calibration at room temperature. Better accuracies are achieved by using two
temperature points for calibration.
Table 16-2.
The values described in
temperature sensor output voltage varies from one chip to another. To be capable of achieving
more accurate results the temperature measurement can be calibrated in the application soft-
ware. The sofware calibration can be done using the formula:
where ADCH and ADCL are the ADC data registers, k is the fixed slope coefficient and T
temperature sensor offset. Typically, k is very close to 1.0 and in single-point calibration the
coefficient may be omitted. Where higher accuracy is required the slope coefficient should be
evaluated based on measurements at two temperatures.
Temperature
ADC
T = k * [(ADCH << 8) | ADCL] + T
REF
POS
the selected voltage reference. The result is presented in two’s complement form, from
is the voltage on the positive input pin, V
Temperature vs. Sensor Output Voltage (Typical Case)
Table 16-2
ADC
230 LSB
-40
=
°
C
(
---------------------------------------------------- - GAIN
are typical values. However, due to process variation the
V
POS
OS
V
V
REF
NEG
) 512
NEG
300 LSB
+25
the voltage on the negative input pin,
ATtiny24A/44A/84A
°
C
370 LSB
+85
Table 16-2
°
C
OS
10
is the
143
°C,

Related parts for ATtiny24A