ATtiny261 Atmel Corporation, ATtiny261 Datasheet - Page 101

no-image

ATtiny261

Manufacturer Part Number
ATtiny261
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of ATtiny261

Flash (kbytes)
2 Kbytes
Pin Count
20
Max. Operating Frequency
20 MHz
Cpu
8-bit AVR
# Of Touch Channels
4
Hardware Qtouch Acquisition
No
Max I/o Pins
16
Ext Interrupts
16
Usb Speed
No
Usb Interface
No
Spi
1
Twi (i2c)
1
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
11
Adc Resolution (bits)
10
Adc Speed (ksps)
15
Analog Comparators
1
Resistive Touch Screen
No
Temp. Sensor
Yes
Crypto Engine
No
Sram (kbytes)
0.12
Eeprom (bytes)
128
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
No
Temp. Range (deg C)
-40 to 85
I/o Supply Class
1.8 to 5.5
Operating Voltage (vcc)
1.8 to 5.5
Fpu
No
Mpu / Mmu
no / no
Timers
2
Output Compare Channels
6
Input Capture Channels
1
Pwm Channels
6
32khz Rtc
No
Calibrated Rc Oscillator
Yes

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATtiny261-15MAZ
Manufacturer:
TI
Quantity:
15
Part Number:
ATtiny261-15MZ
Manufacturer:
ATMEL
Quantity:
5 000
Part Number:
ATtiny261-15MZ
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATtiny261-15XZ
Manufacturer:
Micrel
Quantity:
116
Part Number:
ATtiny261-20MU
Manufacturer:
AVNET
Quantity:
20 000
Part Number:
ATtiny261-20PU
Manufacturer:
ATMEL
Quantity:
256
Part Number:
ATtiny261-20SU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATtiny261-XZ
Manufacturer:
ATMEL
Quantity:
5
Company:
Part Number:
ATtiny261A-SU
Quantity:
7 000
Company:
Part Number:
ATtiny261V-10MU
Quantity:
496
Part Number:
ATtiny261V-10SU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
2588E–AVR–08/10
DAC applications. High frequency allows physically small sized external components (coils,
capacitors), and therefore reduces total system cost.
The timing diagram for the fast PWM mode is shown in
mented until the counter value matches the TOP value. The counter is then cleared at the
following timer clock cycle. The TCNT1 value is in the timing diagram shown as a histogram for
illustrating the single-slope operation. The diagram includes the Waveform Output in non-
inverted and inverted Compare Output modes. The small horizontal line marks on the TCNT1
slopes represent Compare Matches between OCR1x and TCNT1.
Figure 12-12. Fast PWM Mode, Timing Diagram
The Timer/Counter Overflow Flag (TOV1) is set each time the counter reaches TOP. If the inter-
rupt is enabled, the interrupt handler routine can be used for updating the compare value.
In fast PWM mode, the compare unit allows generation of PWM waveforms on the OC1x pins.
Setting the COM1x1:0 bits to two will produce a non-inverted PWM and setting the COM1x1:0 to
three will produce an inverted PWM output. Setting the COM1x1:0 bits to one will enable com-
plementary Compare Output mode and produce both the non-inverted (OC1x) and inverted
output (OC1x). The actual value will only be visible on the port pin if the data direction for the
port pin is set as output. The PWM waveform is generated by setting (or clearing) the Waveforn
Output (OCW1x) at the Compare Match between OCR1x and TCNT1, and clearing (or setting)
the Waveform Output at the timer clock cycle the counter is cleared (changes from TOP to
BOTTOM).
The PWM frequency for the output can be calculated by the following equation:
The N variable represents the number of steps in single-slope operation. The value of N equals
either to the TOP value.
The extreme values for the OCR1C Register represents special cases when generating a PWM
waveform output in the fast PWM mode. If the OCR1C is set equal to BOTTOM, the output will
be a narrow spike for each MAX+1 timer clock cycle. Setting the OCR1C equal to MAX will result
TCNTn
OCWnx
(COMnx1:0 = 2)
OCWnx
(COMnx1:0 = 3)
Period
1
2
3
f
OCnxPWM
4
=
5
f
------------ -
clkT1
N
6
Figure
7
12-12. The counter is incre-
OCRnx Interrupt Flag Set
OCRnx Update and
TOVn Interrupt Flag Set
101

Related parts for ATtiny261