ATtiny261 Atmel Corporation, ATtiny261 Datasheet - Page 197

no-image

ATtiny261

Manufacturer Part Number
ATtiny261
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of ATtiny261

Flash (kbytes)
2 Kbytes
Pin Count
20
Max. Operating Frequency
20 MHz
Cpu
8-bit AVR
# Of Touch Channels
4
Hardware Qtouch Acquisition
No
Max I/o Pins
16
Ext Interrupts
16
Usb Speed
No
Usb Interface
No
Spi
1
Twi (i2c)
1
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
11
Adc Resolution (bits)
10
Adc Speed (ksps)
15
Analog Comparators
1
Resistive Touch Screen
No
Temp. Sensor
Yes
Crypto Engine
No
Sram (kbytes)
0.12
Eeprom (bytes)
128
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
No
Temp. Range (deg C)
-40 to 85
I/o Supply Class
1.8 to 5.5
Operating Voltage (vcc)
1.8 to 5.5
Fpu
No
Mpu / Mmu
no / no
Timers
2
Output Compare Channels
6
Input Capture Channels
1
Pwm Channels
6
32khz Rtc
No
Calibrated Rc Oscillator
Yes

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATtiny261-15MAZ
Manufacturer:
TI
Quantity:
15
Part Number:
ATtiny261-15MZ
Manufacturer:
ATMEL
Quantity:
5 000
Part Number:
ATtiny261-15MZ
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATtiny261-15XZ
Manufacturer:
Micrel
Quantity:
116
Part Number:
ATtiny261-20MU
Manufacturer:
AVNET
Quantity:
20 000
Part Number:
ATtiny261-20PU
Manufacturer:
ATMEL
Quantity:
256
Part Number:
ATtiny261-20SU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATtiny261-XZ
Manufacturer:
ATMEL
Quantity:
5
Company:
Part Number:
ATtiny261A-SU
Quantity:
7 000
Company:
Part Number:
ATtiny261V-10MU
Quantity:
496
Part Number:
ATtiny261V-10SU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
20. Typical Characteristics
20.1
2588E–AVR–08/10
Supply Current of I/O modules
The data contained in this section is largely based on simulations and characterization of similar
devices in the same process and design methods. Thus, the data should be treated as indica-
tions of how the part will behave.
The following charts show typical behavior. These figures are not tested during manufacturing.
During characterisation devices are operated at frequencies higher than test limits but they are
not guaranteed to function properly at frequencies higher than the ordering code indicates.
All current consumption measurements are performed with all I/O pins configured as inputs and
with internal pull-ups enabled. Current consumption is a function of several factors such as oper-
ating voltage, operating frequency, loading of I/O pins, switching rate of I/O pins, code executed
and ambient temperature. The dominating factors are operating voltage and frequency.
A sine wave generator with rail-to-rail output is used as clock source but current consumption in
Power-Down mode is independent of clock selection. The difference between current consump-
tion in Power-Down mode with Watchdog Timer enabled and Power-Down mode with Watchdog
Timer disabled represents the differential current drawn by the Watchdog Timer.
The current drawn from pins with a capacitive load may be estimated (for one pin) as follows:
where V
I/O pin.
The tables and formulas below can be used to calculate the additional current consumption for
the different I/O modules in Active and Idle mode. The enabling or disabling of the I/O modules
are controlled by the Power Reduction Register. See
page 39
Table 20-1.
Table 20-2
ages and frequencies than those mentioned in the
I
CP
PRR bit
PRTIM1
PRTIM0
PRUSI
PRADC
V
CC
CC
for details.
×
C
= operating voltage, C
below can be used for calculating typical current consumption for other supply volt-
L
×
Additional Current Consumption for the different I/O modules (absolute values).
f
SW
V
CC
= 2V, f = 1MHz
65 µA
18 µA
7 µA
5 µA
L
= load capacitance and f
V
Typical numbers
CC
= 3V, f = 4MHz
423 µA
111 µA
39 µA
25 µA
Table 20-1
“PRR – Power Reduction Register” on
SW
above.
= average switching frequency of
V
CC
= 5V, f = 8MHz
1787 µA
165 µA
457 µA
102 µA
197

Related parts for ATtiny261