AMIS-30624 AMI Semiconductor, Inc., AMIS-30624 Datasheet

no-image

AMIS-30624

Manufacturer Part Number
AMIS-30624
Description
I2c Microstepping Motordriver
Manufacturer
AMI Semiconductor, Inc.
Datasheet
AMIS-30624 I
1.0 General Description
The AMIS-30624 is a single-chip microstepping motordriver with a position controller and control/diagnostic interface. It is ready to build
intelligent peripheral systems where up to 32 drivers can be connected to one I
The chip receives positioning instructions through the bus and subsequently drives the stator coils so the two-phase stepper motor
moves to the desired position. The on-chip position controller is configurable (OTP or RAM) for different motor types, positioning ranges
and parameters for speed, acceleration and deceleration. Microstepping allows silent motor operation and increased positioning
resolution. The advanced motion qualification mode enables verification of the complete mechanical system in function of the selected
motion parameters. The AMIS-30624 can easily be connected to an I
like actual position, error flags, etc. from each individual slave node.
An integrated sensorless step-loss detection prevents the positioner from loosing steps and stops the motor when running into stall.
This enables silent, yet accurate position calibrations during a referencing run and allows semi-closed loop operation when approaching
the mechanical end-stops.
The chip is implemented in I2T100 technology, enabling both high voltage analog circuitry and digital functionality on the same chip.
The AMIS-30624 is fully compatible with the automotive voltage requirements.
2.0 Product Features
Motordriver
Controller with RAM and OTP memory
I
Protection
EMI compatibility
2
C interface
AMI Semiconductor – Apr. 2007, Rev 3.1, M-20664-003
www.amis.com
• Microstepping technology
• Sensorless step-loss detection
• Peak current up to 800mA
• Fixed frequency PWM current-control
• Selectable PWM frequency
• Automatic selection of fast and slow decay mode
• No external fly-back diodes required
• 14V/24V compliant
• Motion qualification mode
• Position controller
• Configurable speeds and acceleration
• Input to connect optional motion switch
• Bi-directional 2-wire bus for Inter IC Control
• Field programmable node addresses
• Full diagnostics and status information
• Over-current protection
• Under-voltage management
• Open circuit detection
• High-temp warning and management
• Low-temp flag
• High voltage outputs with slope control
• HV outputs with slope control
2
C Microstepping Motordriver
1
2
C bus where the I
2
C master. This significantly reduces system complexity.
2
C master can fetch specific status information
Data Sheet

Related parts for AMIS-30624

AMIS-30624 Summary of contents

Page 1

... C Microstepping Motordriver 1.0 General Description The AMIS-30624 is a single-chip microstepping motordriver with a position controller and control/diagnostic interface ready to build intelligent peripheral systems where drivers can be connected to one I The chip receives positioning instructions through the bus and subsequently drives the stator coils so the two-phase stepper motor moves to the desired position ...

Page 2

... C Microstepping Motordriver 3.0 Applications The AMIS-30624 is ideally suited for small positioning applications. Target markets include: automotive (headlamp alignment, HVAC, idle control, cruise control), industrial equipment (lighting, fluid control, labeling, process control, XYZ tables, robots) and building automation (HVAC, surveillance, satellite dish, renewable energy systems). Suitable applications typically have multiple axes or require mechatronic solutions with the driver chip mounted directly on the motor ...

Page 3

... AMIS-30624 I C Microstepping Motordriver 6.0 Table of Contents 1.0 General Description.............................................................................................................................................................................. 1 2.0 Product Features .................................................................................................................................................................................. 1 3.0 Applications .......................................................................................................................................................................................... 2 4.0 Ordering Information............................................................................................................................................................................. 2 5.0 Quick Reference Data .......................................................................................................................................................................... 2 6.0 Content................................................................................................................................................................................................. 3 7.0 Block Diagram ...................................................................................................................................................................................... 5 8.0 Pin-out .................................................................................................................................................................................................. 6 9.0 Package Thermal Resistance............................................................................................................................................................... 7 9.1 SOIC-20............................................................................................................................................................................................ 7 9.2 NQFP-32........................................................................................................................................................................................... 7 10.0 DC Parameters................................................................................................................................................................................... 8 11.0 AC Parameters ................................................................................................................................................................................. 10 12.0 Typical Application............................................................................................................................................................................ 12 13.0 Positioning Parameters .................................................................................................................................................................... 12 13.1 Stepping Modes ............................................................................................................................................................................ 12 13.2 Maximum Velocity......................................................................................................................................................................... 13 13.3 Minimum Velocity.......................................................................................................................................................................... 13 13.4 Acceleration and Deceleration ...................................................................................................................................................... 14 13 ...

Page 4

... AMIS-30624 I C Microstepping Motordriver 2 16 Bus Description .......................................................................................................................................................................... 39 16.1 General Description ...................................................................................................................................................................... 39 16.2 Concept ........................................................................................................................................................................................ 39 16.3 General Characteristics ................................................................................................................................................................ 40 16.4 Bit Transfer ................................................................................................................................................................................... 40 16.4.1. Data Validity .......................................................................................................................................................................... 40 16.4.2. START and STOP Conditions ............................................................................................................................................... 41 16.5 Transferring Data .......................................................................................................................................................................... 41 16.5.1. Byte Format........................................................................................................................................................................... 41 16.5.2. Acknowledge ......................................................................................................................................................................... 42 16.5.3. Clock Generation................................................................................................................................................................... 42 16.6 Data Formats with 7-bit Addresses ............................................................................................................................................... 42 16.6.1. Data Transfer Formats .......................................................................................................................................................... 43 16.7 7-bit Addressing ............................................................................................................................................................................ 44 16.7.1. Definition of Bits in the First Byte........................................................................................................................................... 44 16 ...

Page 5

... AMIS-30624 I C Microstepping Motordriver 7.0 Block Diagram SDA SCK 2 I C-bus Interface HW Controller TST1 TST2 Main Control Registers OTP - ROM Temp Vref sense Voltage Regulator VBB VDD AMI Semiconductor – Apr. 2007, Rev 3.1, M-20664-003 www.amis.com SWI AMIS-30624 Position Controller I-sense Decoder Sinewave ...

Page 6

... AMIS-30624 I C Microstepping Motordriver 8.0 Pin-out SDA 1 SCK 2 VDD 3 GND 4 TST1 5 TST2 6 GND CPN 9 CPP 10 PC20060925.2 Table 4: Pin Description Pin Name Pin Description 2 SDA I C serial data line 2 SCK I C serial clock line VDD Internal supply (needs external decoupling capacitor) GND ...

Page 7

... AMIS-30624 I C Microstepping Motordriver 9.0 Package Thermal Resistance 9.1 SOIC-20 To lower the junction-to-ambient thermal resistance recommended to connect the ground leads to a printed circuit board (PCB) ground plane layout as illustrated in Figure 3. The junction-to-case thermal resistance is dependent on the copper area, copper thickness, PCB thickness and number of copper layers. Calculating with a total area of 460 mm thickness and 1 layer, the thermal resistance is 28° ...

Page 8

... AMIS-30624 I C Microstepping Motordriver 10.0 DC Parameters The DC parameters are given for Vbb and temperature in their operating ranges. Currents flowing in the circuit are defined as positive. Table 5: DC Parameters Symbol Pin(s) Parameter Motordriver Max. current through motor coil I MSmax,Peak in normal operation Max. RMS current through coil in normal ...

Page 9

... AMIS-30624 I C Microstepping Motordriver Table 5: DC Parameters (cont.) Charge Pump V Output voltage cp VCP C External buffer capacitor buffer C CPP CPN External pump capacitor pump Motion Qualification Mode Output V Output voltage swing OUT R Output impedance SWI OUT Av Gain = SWI BEMF Notes: (1) No more than 100 cumulated hours in life time above T (2) Thermal shutdown and a low temperature warning are derived from thermal warning ...

Page 10

... AMIS-30624 I C Microstepping Motordriver 11.0 AC Parameters The AC parameters are given for V and temperature in their operating ranges. All timing values of the and V levels (see Figure 5). IHman ILmax Table 6: AC Parameters Symbol Pin(s) Parameter Power-up T Power-up time pu Internal Oscillator f Frequency of internal oscillator osc ...

Page 11

... AMIS-30624 I C Microstepping Motordriver Table 6: AC Parameters (cont.) Switch Input and Hardwire Address Input T Scan pulse period SWI Scan pulse duration sw_on Motordriver (5) F PWM frequency pwm F PWM jitter modulation depth jit_depth MOTxx T Turn-on transient time brise T Turn-off transient time ...

Page 12

... AMIS-30624 I C Microstepping Motordriver 12.0 Typical Application V BAT C 100 µF VDD 1 µ SDA bus SCK R Connect BAT 1 kΩ or GND Notes: All resistors are ± 5%, ¼ W. (1) (2) Depending on the application, the ESR value and working voltage of C (3) C must be a ceramic capacitor to assure low ESR. ...

Page 13

... AMIS-30624 I C Microstepping Motordriver 13.2 Maximum Velocity For each stepping mode, the maximum velocity V The accuracy derived from the internal oscillator. Under special circumstances it is possible to change the V max while a motion is ongoing. All 16 entries for the V application must take care that the new V ...

Page 14

... AMIS-30624 I C Microstepping Motordriver 13.4 Acceleration and Deceleration Sixteen possible values can be programmed for Acc (acceleration and deceleration between V obtainable values in full-step/s². One observes restrictions for some combination of acceleration index and maximum speed (gray cells). The accuracy of Acc is derived from the internal oscillator. ...

Page 15

... AMIS-30624 I C Microstepping Motordriver 13.5.1. Position Ranges A position is coded by using the binary two’s complement format. According to the positioning commands used and to the chosen stepping mode, the position range will be as shown in Table 11. Table 11: Position Range Command Stepping Mode Half stepping th 1/4 microstepping ...

Page 16

... Motion detection is based on the back emf, generated internally in the running motor. When the motor is blocked, for example when it hits the end-position, the velocity and as a result also the generated back emf, is disturbed. The AMIS-30624 senses the back emf, calculates a moving average and compares the value with two independent threshold levels. If the back emf disturbance is bigger than the set threshold, the running motor is stopped ...

Page 17

... AMIS-30624 I C Microstepping Motordriver 15.0 Functional Description This chapter describes the following functional blocks in more detail: • Position controller • Main control and register, OTP memory + ROM • Motordriver 2 The motion detection and I C control are discussed in separate chapters. 15.1 Position Controller 15.1.1. Positioning and Motion Control A positioning command will produce a motion as illustrated in Figure 7 ...

Page 18

... AMIS-30624 I C Microstepping Motordriver Different positioning examples are shown in Table 14. Table 14: Positioning Examples Positioning Examples Short motion New positioning command in same direction, shorter or longer, while a motion is running at maximum velocity. New positioning command in same direction while in deceleration phase Note: there is no wait time between the deceleration phase and the new acceleration phase ...

Page 19

... AMIS-30624 I C Microstepping Motordriver 15.1.2. Dual Positioning A command allows the user to perform positioning using two different velocities. The first motion is done with the SetDualPosition specified Vmin and Vmax velocities in the RAM position Pos1[15:0] also specified in A second relative motion to a position Pos1[15:0] + Pos2[15:0] is done at the specified Vmin velocity in the command (no acceleration) ...

Page 20

... AMIS-30624 I C Microstepping Motordriver 15.1.4. Hardwired Address HW In Figure 10 a simplified schematic diagram is shown of the HW comparator circuit. The HW pin is sensed via two switches S connecting HW pin with a current to resistor converter. Closing S R converter output is low, via the closed passing switch S Closing bottom switch S (DriveLS = 1) will sense a current to VBAT ...

Page 21

... AMIS-30624 I C Microstepping Motordriver As illustrated in Table 15, the state is depending on the previous state, the condition of the two switch controls (DriveLS and DriveHS) and the output of HW_Cmp. Figure 11 shows an example of a practical case where a connection to VBAT is interrupted. Condition R2VBAT DriveHS Tsw = 1024 µs DriveLS Tsw_on = 128 µ ...

Page 22

... AMIS-30624 I C Microstepping Motordriver 15.1.5. External Switch SWI As illustrated in Figure 12, the SWI comparator is almost identical to HW. The major difference is in the limited number of states. Only open or closed is recognised leading to respectively ESW = 0 and ESW = R2GND 2 = R2VBAT 3 = OPEN As illustrated in Figure 14, a change in state is always synchronized with DriveHS or DriveLS. The same synchronization is valid for updating the internal position register ...

Page 23

... Figure 14: Timing Diagram Showing the Change in States for SWI Comparator 15.2 Main Control and Register, OTP Memory + ROM 15.2.1. Power-up Phase The power-up phase of the AMIS-30624 will not exceed 10ms. After this phase, the AMIS-30624 is in shutdown mode, ready to receive messages and execute the associated commands. After power-up, the registers and flags are in the reset state; some of them being loaded with the OTP memory content (see Table 18) ...

Page 24

... AMIS-30624 I C Microstepping Motordriver 15.2.5. Temperature Management The AMIS-30624 monitors temperature by means of two thresholds and one shutdown level, as illustrated in the Figure 15. The only condition necessary to reset flags <TW> and <TSD> (respectively thermal warning and thermal shutdown) is when the temperature is lower than T causing the occurrence of a ...

Page 25

... AMIS-30624 I C Microstepping Motordriver 15.2.6. Battery Under-voltage Management The AMIS-30624 monitors the battery voltage by means of one threshold and one shutdown level, as illustrated in Figure 16. The only condition necessary to reset flags <UV2> and <StepLoss> recover a battery voltage higher than UV1 and to receive a command. ...

Page 26

... AMIS-30624 I C Microstepping Motordriver The command used to load the application parameters via the I SetMotorParam. This allows for a functional verification before using a OTP memory byte. A command issued after each GetOTPparam zapping. 15.2.7.2. Application Parameters Stored in OTP Memory Except for the physical address PA[3:0], these parameters, although programmed in a non-volatile memory, can still be overridden in ...

Page 27

... AMIS-30624 I C Microstepping Motordriver Current amplitude value to be fed to each coil of the steppermotor. The table below provides the 16 possible values Irun[3:0] for IRUN. Index Irun ...

Page 28

... AMIS-30624 I C Microstepping Motordriver Maximum velocity Vmax[3:0] Index Vmax Minimum velocity Vmin[3:0] Index Vmin ...

Page 29

... AMIS-30624 I C Microstepping Motordriver 15.2.8. RAM Registers Table 18: RAM Registers Register Mnemonic Actual position ActPos Last programmed Pos/ position TagPos Acceleration shape AccShape Coil peak current Irun Coil hold current Ihold Minimum velocity Vmin Maximum velocity Vmax Shaft Shaft Acceleration/ Acc deceleration ...

Page 30

... AMIS-30624 I C Microstepping Motordriver 15.2.9. Flags Table Table 19: Flags Table Flag Mnemonic Charge pump failure CPFail Electrical defect ElDef External switch status ESW Motion status Motion Over current in coil X OVC1 Over current in coil Y OVC2 Secure position enabled SecEn Step loss StepLoss Delta high stall ...

Page 31

... AMIS-30624 I C Microstepping Motordriver 15.2.10. Priority Encoder The table below describes the state management performed by the main control block. Table 20: Priority Encoder State → Stopped Motor Stopped, Command Ihold in Coils ↓ OTP refresh slave GetOTPparam response GetFullStatus1 slave [attempt to clear all ...

Page 32

... AMIS-30624 I C Microstepping Motordriver Notes: 1) <ElFlag> = <CPFail> or <UV2> or <ElDef> or <VDDreset> 2) After power-on-reset, the Shutdown state is entered. The shutdown state can only be left after master could read the <VddReset> flag DualPosition sequence runs with a separate set of RAM registers. The parameters that are not specified in a DualPosition command are loaded with the values stored in RAM at the moment the DualPosition sequence starts. AccShape is forced to ‘ ...

Page 33

... AMIS-30624 I C Microstepping Motordriver 15.3 Motordriver 15.3.1. Current Waveforms in the Coils Figure 18 illustrates the current fed to the motor coils by the motordriver in half step mode Coil Y Figure 18: Current Waveforms in Motorcoils X and Y in Halfstep Mode Whereas Figure 19 below shows the current fed to one coil in 1/16 ...

Page 34

... AMIS-30624 I C Microstepping Motordriver 15.3.2. PWM Regulation In order to force a given current (determined by Irun or Ihold and the current position of the rotor) through the motor coil while ensuring high energy transfer efficiency, a regulation based on PWM principle is used. The regulation loop performs a comparison of the sensed output current to an internal reference, and features a digital regulation generating the PWM signal that drives the output switches ...

Page 35

... AMIS-30624 I C Microstepping Motordriver 15.3.6. Charge Pump Monitoring If the charge pump voltage is not sufficient for driving the high side transistors (due to a failure), an internal issued. This is acknowledged to the master by raising the flag <CPFail> (available with command GetFullStatus1). In case this failure occurs while a motion is ongoing, the flag <StepLoss> is also raised. ...

Page 36

... Possible new detection of over temperature or - The application is still low voltage or electrical problem ⇒ Circuit unaware sets <TW> or <TSD> or <UV2> or <StepLoss> or <ElDef> or <CPFail> again at ‘1’ GetFullStatus1 36 Data Sheet Thermal Shutdown Mode) GetFullStatus1 frame ↑… - Possible confirmation of the problem commands to try to get the AMIS-30624 out of ...

Page 37

... Motion detection is based on the back emf generated internally in the running motor. When the motor is blocked, for example when it hits the end-position, the velocity and as a result also the generated back emf, is disturbed. The AMIS-30624 senses the back emf, calculates a moving average and compares the value with two independent threshold levels: Absolute threshold ...

Page 38

... AMIS-30624 I C Microstepping Motordriver Value Table: Table 25: Absolute Threshold Settings AbsThr Index AbsThr Level (V) 0 Disable 1 0.5 2 1.0 3 1.5 4 2.0 5 2.5 6 3.0 7 3.5 8 4.0 9 4.5 A 5.0 B 5.5 C 6.0 D 6.5 E 7.0 F 7.5 MinSamples MinSamples[2: Bemf sampling delay time expressed in number of PWM cycles, for more information please refer to the white paper “ ...

Page 39

... Each device connected to the bus is recognized by a unique address and operates as either a transmitter or receiver, depending on the function of the device. AMIS-30624 can both receive and transmit data. In addition to transmitters and receivers, devices can also be considered as masters or slaves when performing data transfers. AMIS-30624 is a slave device. See Table 30. ...

Page 40

... Data OUT Clock OUT MASTER Figure 24: Connection of a Device to the I in Table 6) and the available number of addresses standard but dependent on the used VDD level. Using AMIS-30624, Data line stable Change of -> Data valid data allowed 2 Figure 25: Bit Transfer on the I C-bus ...

Page 41

... Transferring Data 16.5.1. Byte Format Every byte put on the SDA line must be 8-bits long. The number of bytes that can be transmitted per transfer to AMIS-30624 is restricted to eight. Each byte has to be followed by an acknowledge bit. Data is transferred with the most significant bit (MSB) first (See Figure 27 slave can’ ...

Page 42

... If a master-receiver is involved in the transfer, it must signal the end of data to the slave-transmitter by not generating an acknowledge on the last byte that was clocked out of the slave. AMIS-30624 as slave-transmitter shall release the data line to allow the master to generate STOP or repeated START condition. SDA by master ...

Page 43

... Any further data bytes are followed by an acknowledge bit. The acknowledge bit is used to signal a correct reception of the data to the transmitter. In this case the AMIS-30624 pulls the SDA line to ‘0’. The AMIS-30624 reads the incoming data at SDA on every rising edge of the SCK signal • ...

Page 44

... General Call Address The AMIS-30624 supports also a “general call” address “000 0000”, which can address all devices. When this address is used all devices should respond with an acknowledge. The second byte of the general call address then defines the action to be taken. ...

Page 45

... Configure the positioner with motion parameters (max/min speed, acceleration, stepping mode, etc.) • Provide target positions to the Stepper motor 2 The I C-bus master will have to use commands to manage the different application tasks the AMIS-30624 can feature. The commands summary is given in Table 30. 17.2 Commands Table 2 Table 30: I ...

Page 46

... AMIS-30624 I C Microstepping Motordriver 17.3 Application Commands GetFullStatus1 This command is provided to the circuit by the master to get a complete status of the circuit and of the steppermotor. Refer to Table 18 and Table 19 to see the meaning of the parameters sent back to the I Note: A GetFullStatus1 command will attempt to reset flags < TW >, < TSD >, < UV2 >, < ElDef >, < StepLoss >, < CPFail >, < OVC1 >, < ...

Page 47

... AMIS-30624 I C Microstepping Motordriver GetFullStatus2 This command is provided to the circuit by the master to get the actual, target and secure position of the steppermotor. Both the actual and target position are returned in signed two’s complement 16-bit format. Secure position is coded in 10-bit format. According to the programmed stepping mode the LSBs of ActPos[15:0] and TagPos[15:0] may have no meaning and should be assumed to be ‘ ...

Page 48

... AMIS-30624 I C Microstepping Motordriver GetOTPParam This command is provided to the circuit by the I OTP Memory Structure. GetOTPParam corresponds to the following I Byte Content Bit 7 0 Address 1 Command Byte Content Bit 7 0 Address 1 OTP byte 0 2 OTP byte 1 3 OTP byte 2 4 OTP byte 3 5 OTP byte 4 ...

Page 49

... AMIS-30624 I C Microstepping Motordriver ResetToDefault This command is provided to the circuit by the I will, for instance, overwrite the RAM with the reset state of the registers parameters (see Table 18). This is another way for the I master to initialize a slave node in case of emergency, or simply to refresh the RAM content. ...

Page 50

... AMIS-30624 I C Microstepping Motordriver SetStallParam This command sets the motion detection parameters and the related steppermotor parameters, such as the minimum and maximum velocity, the run- and hold current, acceleration and step-mode. See SetStallParam corresponds to the following I Byte Content Bit 7 0 Address ...

Page 51

... AMIS-30624 I C Microstepping Motordriver SetPosition This command is provided to the circuit by the I details. The priority encoder table (see Priority Encoder) SetPosition corresponds to the following I Byte Content Bit 7 0 Address 1 1 Command 1 2 Data Data Data 3 5 Data 4 Where: Pos [15:0] Signed 16-bit position set-point for motor. ...

Page 52

... Human body model (100pF via 1.5 kΩ, according to JEDEC EIA-JESD22-A114-B.) 18.2 Electrical Transient Conduction Along Supply Lines Test pulses are applied to the power supply wires of the equipment implementing the AMIS-30624 (see application schematic), according to ISO 7637-1 document. Operating Classes are defined in ISO 7637-2. ...

Page 53

... AMIS-30624 I C Microstepping Motordriver 19.0 Package Outline Figure 36: SOIC-20: Plastic Small Outline; 20 leads; Body Width 300mil. AMIS reference: SOIC300 20 300G AMI Semiconductor – Apr. 2007, Rev 3.1, M-20664-003 www.amis.com 53 Data Sheet ...

Page 54

... AMIS-30624 I C Microstepping Motordriver Dimensions: Dim Min Nom Max A 0.8 0 0.05 A2 0.576 0. 615 0.654 A3 0. 203 b 0. 0. 6.75 e 0.65 J 5.37 5.47 5.57 K 5.37 5.47 5.57 L 0.35 0.4 0. 2.185 2.385 7x7 NQFP Figure 37: NQFP-32: No lead Quad Flat Pack; 32 pins; body size mm. AMIS reference: NQFP-32 AMI Semiconductor – ...

Page 55

... AMIS-30624 I C Microstepping Motordriver 20.0 Soldering 20.1 Introduction to Soldering Surface Mount Packages This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in the AMIS “Data Handbook IC26; Integrated Circuit Packages” (document order number 9398 652 90011). There is no soldering method that is ideal for all surface mount IC packages ...

Page 56

... AMIS-30624 I C Microstepping Motordriver 21.0 Company or Product Inquiries For more information about AMI Semiconductor’s motordrivers, please send an email to 30624@amis.com. For more information about AMI Semiconductor’s products or services visit our Web site at http://www.amis.com. 22.0 Document History Table 36: Document History Version Date of Version 1 ...

Related keywords