LTC1629 LINER [Linear Technology], LTC1629 Datasheet - Page 25

no-image

LTC1629

Manufacturer Part Number
LTC1629
Description
PolyPhase, High Efficiency, Synchronous Step-Down Switching Regulators
Manufacturer
LINER [Linear Technology]
Datasheet

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
LTC1629CG
Manufacturer:
LT
Quantity:
3 000
Part Number:
LTC1629CG
Manufacturer:
LT/凌特
Quantity:
20 000
Part Number:
LTC1629CG#PBF
Manufacturer:
LT
Quantity:
4 450
Part Number:
LTC1629CG#PBF
Manufacturer:
Linear
Quantity:
18
Part Number:
LTC1629CG#TR
Manufacturer:
ROHM
Quantity:
4 146
Part Number:
LTC1629CG#TRPBF
Manufacturer:
LT
Quantity:
4 450
Part Number:
LTC1629CG-PG
Manufacturer:
LT/凌特
Quantity:
20 000
Part Number:
LTC1629EG-6
Manufacturer:
LINEAR/凌特
Quantity:
20 000
Part Number:
LTC1629EG-6#PBF
Manufacturer:
LINEAR/凌特
Quantity:
20 000
Part Number:
LTC1629EG-6#TRPBF
Manufacturer:
LINEAR/凌特
Quantity:
20 000
APPLICATIO S I FOR ATIO
Simplified Visual Explanation of How a 2-Phase
Controller Reduces Both Input and Output RMS Ripple
Current
A multiphase power supply significantly reduces the
amount of ripple current in both the input and output
capacitors. The RMS input ripple current is divided by, and
the effective ripple frequency is multiplied up by the
number of phases used (assuming that the input voltage
is greater than the number of phases used times the output
voltage). The output ripple amplitude is also reduced by,
and the effective ripple frequency is increased by the
number of phases used. Figure 10 graphically illustrates
the principle.
The worst-case RMS ripple current for a single stage
design peaks at twice the value of the output voltage . The
worst-case RMS ripple current for a two stage design
results in peaks at 1/4 and 3/4 of input voltage. When the
RMS current is calculated, higher effective duty factor
results and the peak current levels are divided as long as
the currents in each stage are balanced. Refer to Applica-
tion Note 19 for a detailed description of how to calculate
RMS current for the single stage switching regulator.
Figures 3 and 4 help to illustrate how the input and output
currents are reduced by using an additional phase. The
input current peaks drop in half and the frequency is
doubled for a 2-phase converter. The input capacity re-
quirement is reduced theoretically by a factor of four! A
ceramic input capacitor with its unbeatably low ESR
characteristic can be used.
Figure 4 illustrates the RMS input current drawn from the
input capacitance versus the duty cycle as determined by
the ratio of input and output voltage. The peak input RMS
current level of the single phase system is reduced by 50%
in a 2-phase solution due to the current splitting between
the two stages.
An interesting result of the multi-phase solution is that the
V
capacitor, V
duces zero input current ripple in the 2-phase design.
The output ripple current is reduced significantly when
compared to the single phase solution using the same
inductance value because the V
term from the stage(s) that has its bottom MOSFET on
IN
which produces worst-case ripple current for the input
OUT
= V
U
IN
/2, in the single phase design pro-
U
OUT
W
/L discharge current
U
subtracts current from the (V
resulting from the stage which has its top MOSFET on. The
output ripple current is:
where D is duty factor.
The input and output ripple frequency is increased by the
number of stages used, reducing the output capacity
requirements. When V
as illustrated in Figures 3 and 4, very low input and output
ripple currents result.
Again, the interesting result of 2-phase operation results
in no output ripple at V
phases by phase locking additional controllers always
results in no net input or output ripple at V
equal to the number of stages implemented. Designing a
system with a multiple of stages close to the V
will significantly reduce the ripple voltage at the input and
outputs and thereby improve efficiency, physical size, and
heat generation of the overall switching power supply.
I
RIPPLE
Figure 10. Single and PolyPhase Current Waveforms
LTC1629/LTC1629-PG
2
SW1 V
SW2 V
SW V
I
I
COUT
COUT
V
I
I
fL
CIN
CIN
I
I
OUT
L1
L2
1 2 1
IN
1 2
OUT
SINGLE PHASE
DUAL PHASE
is approximately equal to NV
D
= V
D
IN
IN
- V
1
D
/2. The addition of more
OUT
RIPPLE
)/L charging current
1629 F10
OUT
OUT
/V
/V
IN
25
IN
ratios
ratio
OUT

Related parts for LTC1629