PIC18F242 MICROCHIP [Microchip Technology], PIC18F242 Datasheet - Page 75

no-image

PIC18F242

Manufacturer Part Number
PIC18F242
Description
28/40-pin High Performance, Enhanced FLASH Microcontrollers with 10-Bit A/D
Manufacturer
MICROCHIP [Microchip Technology]
Datasheet

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
PIC18F242-E/SP
Manufacturer:
Microchip Technology
Quantity:
135
Part Number:
PIC18F242-I/SO
Manufacturer:
SKYWORKSS
Quantity:
101
Company:
Part Number:
PIC18F242-I/SO
Quantity:
9
Company:
Part Number:
PIC18F242-I/SP
Quantity:
14
Part Number:
PIC18F2420-E/SP
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
Part Number:
PIC18F2420-I/ML
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
Part Number:
PIC18F2420-I/SO
Manufacturer:
MICROCHIP
Quantity:
1 560
Part Number:
PIC18F2420-I/SO
Manufacturer:
NXP/恩智浦
Quantity:
20 000
Part Number:
PIC18F2420-I/SO
0
Part Number:
PIC18F2420-I/SP
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
Part Number:
PIC18F2423-I/SP
Manufacturer:
MICROCHIP
Quantity:
1 290
Part Number:
PIC18F2423-I/SP
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
Part Number:
PIC18F242T-I/SO
Manufacturer:
MICROCHIP
Quantity:
3 400
8.0
The PIC18FXX2 devices have multiple interrupt
sources and an interrupt priority feature that allows
each interrupt source to be assigned a high priority
level or a low priority level. The high priority interrupt
vector is at 000008h and the low priority interrupt vector
is at 000018h. High priority interrupt events will over-
ride any low priority interrupts that may be in progress.
There are ten registers which are used to control
interrupt operation. These registers are:
• RCON
• INTCON
• INTCON2
• INTCON3
• PIR1, PIR2
• PIE1, PIE2
• IPR1, IPR2
It is recommended that the Microchip header files sup-
plied with MPLAB
names in these registers. This allows the assembler/
compiler to automatically take care of the placement of
these bits within the specified register.
Each interrupt source, except INT0, has three bits to
control its operation. The functions of these bits are:
• Flag bit to indicate that an interrupt event
• Enable bit that allows program execution to
• Priority bit to select high priority or low priority
The interrupt priority feature is enabled by setting the
IPEN bit (RCON<7>). When interrupt priority is
enabled, there are two bits which enable interrupts glo-
bally. Setting the GIEH bit (INTCON<7>) enables all
interrupts that have the priority bit set. Setting the GIEL
bit (INTCON<6>) enables all interrupts that have the
priority bit cleared. When the interrupt flag, enable bit
and appropriate global interrupt enable bit are set, the
interrupt will vector immediately to address 000008h or
000018h, depending on the priority level. Individual
interrupts can be disabled through their corresponding
enable bits.
© 2006 Microchip Technology Inc.
occurred
branch to the interrupt vector address when the
flag bit is set
INTERRUPTS
®
IDE be used for the symbolic bit
When the IPEN bit is cleared (default state), the inter-
rupt priority feature is disabled and interrupts are com-
patible
Compatibility mode, the interrupt priority bits for each
source have no effect. INTCON<6> is the PEIE bit,
which enables/disables all peripheral interrupt sources.
INTCON<7> is the GIE bit, which enables/disables all
interrupt sources. All interrupts branch to address
000008h in Compatibility mode.
When an interrupt is responded to, the Global Interrupt
Enable bit is cleared to disable further interrupts. If the
IPEN bit is cleared, this is the GIE bit. If interrupt priority
levels are used, this will be either the GIEH or GIEL bit.
High priority interrupt sources can interrupt a low
priority interrupt.
The return address is pushed onto the stack and the
PC is loaded with the interrupt vector address
(000008h or 000018h). Once in the Interrupt Service
Routine, the source(s) of the interrupt can be deter-
mined by polling the interrupt flag bits. The interrupt
flag bits must be cleared in software before re-enabling
interrupts to avoid recursive interrupts.
The “return from interrupt” instruction, RETFIE, exits
the interrupt routine and sets the GIE bit (GIEH or GIEL
if priority levels are used), which re-enables interrupts.
For external interrupt events, such as the INT pins or
the PORTB input change interrupt, the interrupt latency
will be three to four instruction cycles. The exact
latency is the same for one or two-cycle instructions.
Individual interrupt flag bits are set, regardless of the
status of their corresponding enable bit or the GIE bit.
Note:
with
Do not use the MOVFF instruction to modify
any of the Interrupt control registers while
any interrupt is enabled. Doing so may
cause erratic microcontroller behavior.
PICmicro
®
PIC18FXX2
mid-range
DS39564C-page 73
devices.
In

Related parts for PIC18F242