ADUC847BCP8-5 AD [Analog Devices], ADUC847BCP8-5 Datasheet - Page 48

no-image

ADUC847BCP8-5

Manufacturer Part Number
ADUC847BCP8-5
Description
MicroConverter Multichannel 24-/16-Bit ADCs with Embedded 62 kB Flash and Single-Cycle MCU
Manufacturer
AD [Analog Devices]
Datasheet
ADuC845/ADuC847/ADuC848
NONVOLATILE FLASH/EE MEMORY OVERVIEW
The ADuC845/ADuC847/ADuC848 incorporate Flash/EE
memory technology on-chip to provide the user with nonvolatile,
in-circuit reprogrammable code and data memory space.
Like EEPROM, flash memory can be programmed in-system at
the byte level, although it must first be erased, in page blocks.
Thus, flash memory is often and more correctly referred to as
Flash/EE memory.
Overall, Flash/EE memory represents a step closer to the ideal
memory device that includes nonvolatility, in-circuit program-
mability, high density, and low cost. The Flash/EE memory
technology incorporated allows the user to update program
code space in-circuit, without needing to replace onetime
programmable (OTP) devices at remote operating nodes.
Flash/EE Memory on the ADuC845, ADuC847, ADuC848
The ADuC845/ADuC847/ADuC848 provide two arrays of
Flash/EE memory for user applications—up to 62 kbytes of
Flash/EE program space and 4 kbytes of Flash/EE data memory
space. Also, 8-kbyte and 32-kbyte program memory options are
available. All examples and references in this datasheet use the
62-kbyte option; however, similar protocols and procedures are
applicable to the 32-kbyte and 8-kbyte options, provided that
the difference in memory size is taken into account.
The 62 kbytes Flash/EE code space are provided on-chip to
facilitate code execution without any external discrete ROM
device requirements. The program memory can be programmed
in-circuit, using the serial download mode provided, using
conventional third party memory programmers, or via any
user-defined protocol in user download (ULOAD) mode.
The 4-kbyte Flash/EE data memory space can be used as a
general-purpose, nonvolatile scratchpad area. User access to this
area is via a group of seven SFRs. This space can be programmed
at a byte level, although it must first be erased in 4-byte pages.
SPACE EFFICIENT/
DENSITY
TECHNOLOGY
Figure 26. Flash/EE Memory Development
EPROM
FLASH/EE MEMORY
TECHNOLOGY
TECHNOLOGY
REPROGRAMMABLE
EEPROM
IN-CIRCUIT
Rev. A | Page 48 of 108
The following sections use the 62-kbyte program space as an
example when referring to program and ULOAD mode. For the
other memory models (32-kbyte and 8-kbyte), the ULOAD
space moves to the top 6 kbytes of the on-chip program memory,
that is, for the 32-kbyte memory model, the ULOAD space is
from 26 kbytes to 32 kbytes. The kernel still resides in the
protected area from 60 kbytes to 62 kbytes. The ULOAD space
resides from 2 kbytes to 8 kbytes on the 8-byte part.
Flash/EE Memory Reliability
The Flash/EE program and data memory arrays on the
ADuC845/ADuC847/ADuC848 are fully qualified for two key
Flash/EE memory characteristics: Flash/EE memory cycling
endurance and Flash/EE memory data retention.
Endurance quantifies the ability of the Flash/EE memory to be
cycled through many program, read, and erase cycles. In real
terms, a single endurance cycle is composed of four
independent, sequential events:
1.
2.
3.
4.
In reliability qualification, every byte in both the program and
data Flash/EE memory is cycled from 00H to FFH until a first
fail is recorded, signifying the endurance limit of the on-chip
Flash/EE memory.
As indicated in the specification table, the ADuC845/ADuC847/
ADuC848 Flash/EE memory endurance qualification has been
carried out in accordance with JEDEC Specification A117 over
the industrial temperature range of –40°C, +25°C, +85°C, and
+125°C. (The CSP package is qualified to +85°C only.) The
results allow the specification of a minimum endurance figure
over supply and temperature of 100,000 cycles, with an endurance
figure of 700,000 cycles being typical of operation at 25°C.
Retention is the ability of the Flash/EE memory to retain its
programmed data over time. Again, the parts have been qualified
in accordance with the formal JEDEC Retention Lifetime
Specification (A117) at a specific junction temperature (T
55°C). As part of this qualification procedure, the Flash/EE
memory is cycled to its specified endurance limit described
previously, before data retention is characterized. This means
that the Flash/EE memory is guaranteed to retain its data for its
full specified retention lifetime every time the Flash/EE memory
is reprogrammed. It should also be noted that retention lifetime,
based on an activation energy of 0.6 eV, derates with T
in Figure 27.
Initial page erase sequence
Read/verify sequence
Byte program sequence
Second read/verify sequence
J
as shown
J
=

Related parts for ADUC847BCP8-5